The TOFFEE Project
HOMEDOCUMENTATIONUPDATESVIDEOSRESEARCHDOWNLOADSPONSORSCONTACT


DOCUMENTATION 》 TOFFEE with Hardware Compression and Decompression Accelerator Cards

You can build a basic TOFFEE WAN Optimization hardware completely in software layer (i.e its networking data-plane and control-plane). And if you are a product manufacturer you can make commercial WAN Optimization products with TOFFEE with software layer alone. And if you choose to improve its performance, you can use any third-party PCIe Compression Accelerator cards.

Here is the TOFFEE system architecture with and without hardware accelerator card (i.e Hardware offload). Hardware offload will greatly reduce the load on general purpose CPU (which is your software/OS layer) and the core data optimization operation such as loss-less compression (sometimes even encryption) is done within a dedicated Hardware Accelerator card (or chip) as shown below.
TOFFEE Architecture with Compression and Decompression Accelerator Card [CDN]

In this case TOFFEE will work as an WAN Optimization framework. With this framework you can architect your entire commercial WAN Optimization product series. You need to modify TOFFEE Linux kernel modules (and APIs) so that it no longer choose kernel's LZ77, LZO or LZ4 software compression libraries (which is CPU bound), instead point to the hardware accelerator card vendor provided kernel's driver/library APIs. This makes packet data compression within TOFFEE Linux Kernel module CPU bound to dedicated co-processor hardware compression accelerator card bound.

It is a well known fact that Linux Kernel's Kernel modules are not great at scaling with multiple CPU Processor Cores. So in a systems architecture point of having more CPU cores in a TOFFEE WAN Optimization device gives no significant advantage. The per-core CPU performance is what required for a workload like TOFFEE packet data optimization. So if architect a high-end WAN Optimization device you need to consider hardware acceleration offload if feasible.

For example: Here is a general purpose AHA AHA363PCIE0301G 5Gbs GZIP Compression/Decompression Accelerator Card. Typical applications (or use-cases) of this card could be Storage Arrays, Load Balancers, WAN Optimization, Web Servers, Data Analytics, etc.
Comtech AHA AHA363PCIE0301G 5Gbs GZIP Compression/Decompression Accelerator Card
Image courtesy/link: https://images-na.ssl-images-amazon.com/images/I/61kMl1v4BmL._SL1500_.jpg



Intel FPGA PAC D5005 High-end Drop-in Accelerator: Here is yet another but general purpose FPGA Accelerator card can be used for processing high-bandwidth Network and Storage Data Processing (hardware offload). Read the complete article here.
Intel FPGA PAC D5005 On HPE ProLiant DL380 Gen10
Image courtesy/link: https://www.servethehome.com/wp-content/uploads/2019/08/Intel-FPGA-PAC-D5005-on-HPE-ProLiant-DL380-Gen10.jpg
Intel FPGA PAC D5005
Image courtesy/link: https://www.servethehome.com/wp-content/uploads/2019/08/Intel-FPGA-PAC-D5005-Diagram.jpg


References:



Suggested Topics:


TOFFEE - WAN Optimization


Categories

💎 TOFFEE-MOCHA new bootable ISO: Download
💎 TOFFEE Data-Center Big picture and Overview: Download PDF


Recommended Topics:

Bitcoin Mining - Blockchain Technology - Network Optimization via TOFFEE Data-Center WAN Optimization ↗
Saturday' 13-Mar-2021
Bitcoin Mining - Blockchain Technology - Network Optimization via TOFFEE Data-Center WAN Optimization

Raspberry Pi as a Networking Device ↗
Saturday' 13-Mar-2021
Raspberry Pi is often used as a single board computer for applications such as IoT, hobby projects, DIY, education aid, research and prototyping device. But apart from these applications Raspberry Pi can be used for real-world applications such as in making a full-fledged networking devices. Raspberry Pi is a single board ARM based hardware which is why it is also classified as ARM based SoC. Since it is ARM based it is highly efficient, tiny form-factor and lower in power consumption with moderate computational power. This will allow it to work several hours on emergency battery backup power supply such as low-cost domestic UPS and or some renewable energy source, which is a prerequisite for a typical networking device.

Power consumption of my Home Lab devices for research ↗
Saturday' 13-Mar-2021
Here is my power-consumption measurements of various devices deployed within my home lab. I measured via my kill-a-watt sort of power-meter which is fairly reliable and accurate. I checked its accuracy with various standard load such as Philips LED laps and other constant power-consuming devices to make sure that the power-meter is precise.

TEST CASES :: TEST RESULTS :: Raspberry Pi WAN Emulator TOFFEE-Mocha-1.0.14-1-rpi2 ↗
Saturday' 13-Mar-2021

TOFFEE Data-Center optimized Internet of Things (IoT) Platform ↗
Saturday' 13-Mar-2021

TOFFEE-Mocha Documentation :: TOFFEE-Mocha-1.0.32-1-x86_64 and TOFFEE-Mocha-1.0.32-1-i386 ↗
Saturday' 13-Mar-2021

Watch on Youtube - [889//1] 280 WAN Optimization - Animated demo of Packet Optimization in TOFFEE-DataCenter ↗


First TOFFEE Code Release ↗
Saturday' 13-Mar-2021
I started working on the new TOFFEE project (which is the fork of my earlier TrafficSqueezer open-source project) starting from 1st January 2016 onwards. Ever since I was busy in research and altering certain old features so that it is more minimal than TrafficSqueezer, a more focused agenda, deliver refined code and a broader vision. I have lined up more things to follow in the upcoming months. I want to focus about all aspects of WAN communication technologies not just on core WAN Optimization research and technology.

TOFFEE (and TOFFEE-DataCenter) deployment with VPN devices ↗
Saturday' 13-Mar-2021
In case if you need to deploy TOFFEE along with your existing VPN devices you can deploy the same as shown below. This will allow your VPN devices to encrypt your TOFFEE WAN Optimized network data. NOTE: Make sure about the VPN deployment topology done in the right order. Else TOFFEE (LAN side) may get VPN encrypted packets which may not be possible (and or difficult) to further optimize. Hence always make sure to deploy them in a topology suggested below so that TOFFEE devices are out of VPN tunnel.

First TOFFEE-Butterscotch Code Release ↗
Saturday' 13-Mar-2021
TOFFEE-Butterscotch is a variant of TOFFEE can be used to save and optimize your Home/SOHO Internet/WAN bandwidth. Unlike TOFFEE (and TOFFEE-DataCenter) TOFFEE-Butterscotch is a non peer-to-peer (and asymmetric) network optimization solution. This makes TOFFEE-Butterscotch an ideal tool for all Home and SOHO users.

My Lab Battery Purchase and Service logs for Research ↗
Saturday' 13-Mar-2021
Here is a complete log of my lab battery purchase, service record which I maintain in Google drive. These I use for my home (or my family generic use) as well as a part of my home lab. I maintain a detailed log this way to monitor the failure rate of these batteries. This will allow me to select a specific brand/model which has higher success rate and to monitor any premature failure/expiry. The service log helps me to monitor and schedule the next service routine so that I can maintain these batteries in tip-top condition.



Featured Educational Video:
Watch on Youtube - [1836//1] x257 tp-link UE300 Linux Kernel Realtek Driver Codewalk rtl8153a-3 r8152 USB 3.0 to Gigabit - Part1 ↗

TOFFEE Data-Center optimized Internet of Things (IoT) Platform ↗
Saturday' 13-Mar-2021

Recording Lab Monthly off-grid power-consumption readings for research ↗
Saturday' 13-Mar-2021

WAN Optimization Network Stack Architecture - Linux Kernel vs Intel DPDK vs Custom Packet Forward ↗
Saturday' 13-Mar-2021

TOFFEE (and TOFFEE-DataCenter) deployment in SD-WAN Applications ↗
Saturday' 13-Mar-2021
Software-Defined Wide Area Networking (SD-WAN) is a new innovative way to provide optimal application performance by redefining branch office networking. Unlike traditional expensive private WAN connection technologies such as MPLS, etc., SD-WAN delivers increased network performance and cost reduction. SD-WAN solution decouple network software services from the underlying hardware via software abstraction.



Watch on Youtube - [1888//1] Deep Space Communication - Episode1 - Introduction ↗

TOFFEE-Mocha WAN emulator Lab deployment and topology guide ↗
Saturday' 13-Mar-2021



Research :: Optimization of network data (WAN Optimization) at various levels:
Network File level network data WAN Optimization


Learn Linux Systems Software and Kernel Programming:
Linux, Kernel, Networking and Systems-Software online classes


Hardware Compression and Decompression Accelerator Cards:
TOFFEE Architecture with Compression and Decompression Accelerator Card


TOFFEE-DataCenter on a Dell Server - Intel Xeon E5645 CPU:
TOFFEE-DataCenter screenshots on a Dual CPU - Intel(R) Xeon(R) CPU E5645 @ 2.40GHz - Dell Server