The TOFFEE Project
HOMEDOCUMENTATIONUPDATESVIDEOSRESEARCHDOWNLOADSPONSORSCONTACT


RESEARCH 》 Multi-dimensional (Multi-universe) Internet Technology - A Proposal

Preface:
Kindly watch my detailed Youtube intro video to understand the context:

Currently what we have is a single homogeneous (sort of) WWW Internet. Which we can consider as a single-dimensional network. Here are the reasons why I mean its single-dimensional:

  • common IPv4 address-space (public IP) across the world
  • DNS mapping and domains (namespace across the world)
  • Internet Assigned Numbers Authority (IANA) (ICANN) controlling/responsible for domain namespace across the world

What I propose is that we can create complete independent multiple “Internets” with each Internet having its own IP-address space, Domain namespace and an authority to manage Domain names. And these networks/Internets can be entirely IPv4 only based or IPv6 only based.

01 Multi-dimensional Multi-universe Internet Technology [CDN]

ISPs:
Currently we have only a choice to choose the ISP and by subscribing to their service we get access to single Internet. But with multiple Internets we can have subscriptions to one or multiple Internets just like TV channels as shown below.

02 Multi-dimensional Multi-universe Internet Technology

International vs National Internets:
We have currently Internet which is a global WWW. But we can have country specific Internet, community specific Internet, area specific Internet, and so on as shown below with multi-dimensional Internets.

03 Multi-dimensional Multi-universe Internet Technology [CDN]

Community Internets:
So if it is a small community driven Internet it is nothing but an Intranet (sort of). In this case we may no longer need large ISPs. Instead this network can be built and managed entirely by community with public/community funded networking equipment.

04 Multi-dimensional Multi-universe Internet Technology

Country specific Internets:
Unlike existing Internet. Country specific Internet can have a complete Internet infrastructure heavily regulated by local country specific laws. This may help in few situations such as tackling issues like pronography, violence, drugs, etc which a specific country may wish to ban/censor all together. This is not possible with existing scenario. Internet is so vast banning outright any content is simply not always feasible. Sometimes this also means safe Internet for schools, children and family.

Some challenges:
Apart from various advantages having multiple Internets (as discussed above). I can foresee these issues. You can kindly put forward your views :)

  • Case 1: Spanning Domain names across Internets this way. But is this legal ?
    05 Multi-dimensional Multi-universe Internet Technology
  • Case 2: Phishing, security and authenticity ?
  • Case 3: Possibility of Inter-connectivity (some kind of bridging, etc) ?
    So that users connected to WWW can reach WWW2, WWW3 and so on.
    Note: Bridging I mean not L2-bridging. What I mean here is chances/feasibility of Internet Inter-connectivity.
    06 Multi-dimensional Multi-universe Internet Technology

Why and when I got such an idea:
I got this idea in the year 2014 when I was exploring about CubeSats (and such Satellite Network via Raspberry Pi soon after I purchased my first Raspberry Pi2). Satellite networks are networks of networks. Unlike land based networks Satellite Networks have no such restrictions. And I was also partially inspired by Google Loon project. Eventually it struck me that why we need to limit ourselves with just one Interent (or WWW) ? Why cannot we have multiple individual (and so multi-dimensional) WWWs ?

So I was confused how to share this view globally. Initially shared with few of my high-profile contacts who are into Internet services, Network Infrastructure domain, etc. But eventually it turned out either they are not interested, or a case that they are unable to imagine the magnitude of change this can cause globally.

Conclusion:
Hope you guys got some big picture. I am still in the process of writing this proposal. If you have any ideas or suggestions you can kindly put forward.



Suggested Topics:


Generic

💎 TOFFEE-MOCHA new bootable ISO: Download
💎 TOFFEE Data-Center Big picture and Overview: Download PDF


Recommended Topics:

Setting up a WAN Emulator within VirtualBox ↗
Saturday' 13-Mar-2021

TOFFEE-DataCenter :: Features Supported ↗
Saturday' 13-Mar-2021
Here is a list of TOFFEE-DataCenter features supported. TOFFEE-DataCenter currently supports some of the important features such as loss-less network data compression, Packet Deduplication (protocols/applications supported), Application Acceleration, TCP Acceleration, dynamic MTU optimization, data packaging, hardware offload support, etc.

TOFFEE-Mocha WAN Emulation software development - Update: 18-June-2016 ↗
Saturday' 13-Mar-2021
In the previous update (17-Jun-2016) I discussed about the upcoming new Random Packet drop feature along with other completed features. Now I completed the entire TOFFEE-Mocha Random packet drop feature. I completed all the kernel components and the UI support of the same. And to make GUI settings more organized I split the earlier Basic-Settings page into two separate pages namely: Packet Drop and Packet Delay. So this way it is simple to understand settings according to their functionality.

Bufferbloat in a Networking Device or an Appliance ↗
Saturday' 13-Mar-2021

My Lab HDD and SSD logs for research ↗
Saturday' 13-Mar-2021

TOFFEE Download :: TOFFEE-1.1.70-1-portable ↗
Saturday' 13-Mar-2021



Live demo - Data Transfer - High bandwidth to Low bandwidth ↗
Saturday' 13-Mar-2021
I always wanted to do some real experiments and research on packet flow patterns from High-bandwidth to Low-bandwidth networks via networking devices. This is something can be analyzed via capturing Network stack buffer data and other parameters, bench-marking, and so on. But eventually the data-transfer nature and other aspects is often contaminated due to the underlying OS and the way Network stack is implemented. So to understand the nature of packet flow from Higher to Lower bandwidth and vice-versa such as Lower to higher bandwidth, I thought I experiment with various tools and things which physically we can observe this phenomena.

TOFFEE-DataCenter WAN Optimization - Google Hangouts Demo and VOIP Optimization ↗
Saturday' 13-Mar-2021

TOFFEE (and TOFFEE-DataCenter) optimized Wireless Mesh-Networks - B.A.T.M.A.N [open-mesh.org (Open Mesh)] ↗
Saturday' 13-Mar-2021
TOFFEE/TOFFEE-DataCenter can be used to optimize Ad-Hoc Mobile Wireless Mesh-Networks. To learn more about the same here are some references: B.A.T.M.A.N. - https://en.wikipedia.org/wiki/B.A.T.M.A.N. Mobile ad hoc network (MANET) - https://en.wikipedia.org/wiki/Mobile_ad_hoc_network Wireless ad hoc network (WANET) - https://en.wikipedia.org/wiki/Wireless_ad_hoc_network open-mesh.org (Open Mesh) Wiki - https://www.open-mesh.org/projects/open-mesh/wiki

TOFFEE-DataCenter :: Optimized ISP backbone networks for countries with slowest Internet Speed ↗
Saturday' 13-Mar-2021



Featured Educational Video:
Watch on Youtube - [943//1] x23e TrueNAS ZFS Pool Resilver over and over again issue | ZFS NAS Storage | Forever Resilver ↗

Setting up a WAN Emulator within VirtualBox ↗
Saturday' 13-Mar-2021

TOFFEE Data-Center optimized Internet of Things (IoT) Platform ↗
Saturday' 13-Mar-2021

Internet optimization through TOFFEE-DataCenter WAN Optimization Demo ↗
Saturday' 13-Mar-2021

TEST CASES :: TEST RESULTS :: TOFFEE-Mocha-1.0.14 Development version ↗
Saturday' 13-Mar-2021



Watch on Youtube - [1888//1] Deep Space Communication - Episode1 - Introduction ↗

TOFFEE-Mocha Documentation :: TOFFEE-Mocha-1.0.18-1-x86_64 ↗
Saturday' 13-Mar-2021



Research :: Optimization of network data (WAN Optimization) at various levels:
Network File level network data WAN Optimization


Learn Linux Systems Software and Kernel Programming:
Linux, Kernel, Networking and Systems-Software online classes


Hardware Compression and Decompression Accelerator Cards:
TOFFEE Architecture with Compression and Decompression Accelerator Card


TOFFEE-DataCenter on a Dell Server - Intel Xeon E5645 CPU:
TOFFEE-DataCenter screenshots on a Dual CPU - Intel(R) Xeon(R) CPU E5645 @ 2.40GHz - Dell Server