Проект TOFFEE
ГЛАВНАЯДОКУМЕНТАЦИЯОБНОВЛЕНИЕВИДЕОИССЛЕДОВАНИЕСКАЧАТЬСПОНСОРЫконтакт


RESEARCH 》 Multi-dimensional (Multi-universe) Internet Technology - A Proposal

Preface:
Kindly watch my detailed Youtube intro video to understand the context:

Currently what we have is a single homogeneous (sort of) WWW Internet. Which we can consider as a single-dimensional network. Here are the reasons why I mean its single-dimensional:

  • common IPv4 address-space (public IP) across the world
  • DNS mapping and domains (namespace across the world)
  • Internet Assigned Numbers Authority (IANA) (ICANN) controlling/responsible for domain namespace across the world

What I propose is that we can create complete independent multiple “Internets” with each Internet having its own IP-address space, Domain namespace and an authority to manage Domain names. And these networks/Internets can be entirely IPv4 only based or IPv6 only based.

01 Multi-dimensional Multi-universe Internet Technology [CDN]

ISPs:
Currently we have only a choice to choose the ISP and by subscribing to their service we get access to single Internet. But with multiple Internets we can have subscriptions to one or multiple Internets just like TV channels as shown below.

02 Multi-dimensional Multi-universe Internet Technology [CDN]

International vs National Internets:
We have currently Internet which is a global WWW. But we can have country specific Internet, community specific Internet, area specific Internet, and so on as shown below with multi-dimensional Internets.

03 Multi-dimensional Multi-universe Internet Technology

Community Internets:
So if it is a small community driven Internet it is nothing but an Intranet (sort of). In this case we may no longer need large ISPs. Instead this network can be built and managed entirely by community with public/community funded networking equipment.

04 Multi-dimensional Multi-universe Internet Technology

Country specific Internets:
Unlike existing Internet. Country specific Internet can have a complete Internet infrastructure heavily regulated by local country specific laws. This may help in few situations such as tackling issues like pronography, violence, drugs, etc which a specific country may wish to ban/censor all together. This is not possible with existing scenario. Internet is so vast banning outright any content is simply not always feasible. Sometimes this also means safe Internet for schools, children and family.

Some challenges:
Apart from various advantages having multiple Internets (as discussed above). I can foresee these issues. You can kindly put forward your views :)

  • Case 1: Spanning Domain names across Internets this way. But is this legal ?
    05 Multi-dimensional Multi-universe Internet Technology [CDN]
  • Case 2: Phishing, security and authenticity ?
  • Case 3: Possibility of Inter-connectivity (some kind of bridging, etc) ?
    So that users connected to WWW can reach WWW2, WWW3 and so on.
    Note: Bridging I mean not L2-bridging. What I mean here is chances/feasibility of Internet Inter-connectivity.
    06 Multi-dimensional Multi-universe Internet Technology

Why and when I got such an idea:
I got this idea in the year 2014 when I was exploring about CubeSats (and such Satellite Network via Raspberry Pi soon after I purchased my first Raspberry Pi2). Satellite networks are networks of networks. Unlike land based networks Satellite Networks have no such restrictions. And I was also partially inspired by Google Loon project. Eventually it struck me that why we need to limit ourselves with just one Interent (or WWW) ? Why cannot we have multiple individual (and so multi-dimensional) WWWs ?

So I was confused how to share this view globally. Initially shared with few of my high-profile contacts who are into Internet services, Network Infrastructure domain, etc. But eventually it turned out either they are not interested, or a case that they are unable to imagine the magnitude of change this can cause globally.

Conclusion:
Hope you guys got some big picture. I am still in the process of writing this proposal. If you have any ideas or suggestions you can kindly put forward.



Suggested Topics:


Generic

💎 TOFFEE-MOCHA new bootable ISO: Download
💎 TOFFEE Data-Center Big picture and Overview: Download PDF


Рекомендуемые темы:

Moon Base and Space Colonization - First we need fast InterPlanetary Internet ↗
Saturday' 13-Mar-2021

TOFFEE-DataCenter Download :: TOFFEE-DATACENTER-1.2.2-1-portable ↗
Saturday' 13-Mar-2021

CDN Introduction - Content Delivery Networks or Content Distribution Networks ↗
Saturday' 13-Mar-2021

Introducing TOFFEE-DataCenter ↗
Saturday' 13-Mar-2021
TOFFEE TOFFEE Data-Center is specifically meant for Data Center, Cluster Computing, HPC applications. TOFFEE is built in Linux Kernel core. This makes it inflexible to adapt according to the hardware configuration. It does sequential packet processing and does not scale up well in large multi-core CPU based systems (such as Intel Xeon servers, Core i7 Extreme Desktop systems,etc). Apart from this since it is kernel based, if there is an issue in kernel, it may crash entire system. This becomes a challenge for any carrier grade equipment (CGE) hardware build.

TOFFEE-Mocha Documentation :: TOFFEE-Mocha-1.0.32-1-x86_64 and TOFFEE-Mocha-1.0.32-1-i386 ↗
Saturday' 13-Mar-2021

TOFFEE-DataCenter WAN Optimization :: TOFFEE-DATACENTER-1.3.25-1-portable ↗
Saturday' 13-Mar-2021
Download TOFFEE-DATACENTER-1.3.25-1-portable.tar.xz via Google Drive share: platform independent (portable) source: TOFFEE-DATACENTER-1.2.2-1-portable.tar.xz * Alternatively download from SOURCEFORGE project site. * Here are the TOFFEE-DataCenter supported features. * To know more about the project kindly refer TOFFEE-Datacenter Documentation, News and Updates



Network Latency and Bandwidth Assessment - for Network Admins and Infrastructure Architects ↗
Saturday' 13-Mar-2021

TOFFEE Data-Center WAN Optimization deployment in Big Data Analytics ↗
Saturday' 13-Mar-2021

Skype VOIP Data - WAN Acceleration ↗
Saturday' 13-Mar-2021

TOFFEE-Mocha WAN Emulator Jitter Feature ↗
Saturday' 13-Mar-2021



Featured Educational Video:
Watch on Youtube - [8613//1] x254 Kernel Init Code without Kernel Module - Kernel Programming Tip #linode ↗

TOFFEE Download :: TOFFEE-1.1.70-1-portable ↗
Saturday' 13-Mar-2021

TOFFEE-Mocha WAN Emulation software development - Update: 16-June-2016 ↗
Saturday' 13-Mar-2021
I started TOFFEE-Mocha WAN Emulation software development on 1-June-2016. I took the existing TOFFEE components as a base. Although the TOFFEE-Mocha is entirely an independent fresh Open-Source WAN Emulation solution. Ever since I am in the process of defining and inventing features. So far I come up with the most important feature which is expected to be present in any WAN Emulation software is the packet delay option.

TOFFEE deployment topology guide ↗
Saturday' 13-Mar-2021
Assume you have two sites (such as Site-A and Site-B) connected via slow/critical WAN link as shown below. You can optimize this link by saving the bandwidth as well possibly improve the speed. However, the WAN speed can be optimized only if the WAN link speeds are below that of the processing latency of your TOFFEE installed hardware. Assume your WAN link is 12Mbps, and assume the maximum WAN optimization speed/capacity of Raspberry Pi is 20Mbps, then your link will get speed optimization too. And in another case, assume your WAN link is 50Mbps, then using the Raspberry Pi as WAN Optimization device will actually increase the latency (i.e slows the WAN link). But in all the cases the bandwidth savings should be the same irrespective of the WAN link speed. In other words, if you want to cut down the WAN link costs via this WAN Optimization set up, you can always get it since it reduces the overall bandwidth in almost all the cases (including encrypted and pre-compressed data).

DIY TOFFEE WAN Optimization Device with Intel Celeron Mini PC ↗
Saturday' 13-Mar-2021
Here is a step-by-step DIY to build your own Intel based Mini PC WAN Optimization Device with TOFFEE. I chose this below Intel Celeron Mini PC since it is fan-less aluminium case and as well it has 2 dedicated inbuilt Gigabit Ethernet ports. You can use one for LAN Network and one for WAN Network.



Watch on Youtube - [1888//1] Deep Space Communication - Episode1 - Introduction ↗

TOFFEE-Mocha WAN Emulation software development - Update: 20-Oct-2016 ↗
Saturday' 13-Mar-2021
I was doing some specific tests in my TOFFEE and TOFFEE-DataCenter (WAN optimization) scenarios such as variable upload and download speeds. And I was also doing some experiments with speedtest.net and I did some of these tests with TOFFEE-Mocha. I realized there is a case that I can introduce asymmetric constant delays so that you can get different download speed and a different upload speed. And in some cases much faster download speeds and relatively slower upload speeds.



Research :: Optimization of network data (WAN Optimization) at various levels:
Network File level network data WAN Optimization


Learn Linux Systems Software and Kernel Programming:
Linux, Kernel, Networking and Systems-Software online classes [CDN]


Hardware Compression and Decompression Accelerator Cards:
TOFFEE Architecture with Compression and Decompression Accelerator Card


TOFFEE-DataCenter on a Dell Server - Intel Xeon E5645 CPU:
TOFFEE-DataCenter screenshots on a Dual CPU - Intel(R) Xeon(R) CPU E5645 @ 2.40GHz - Dell Server