O projeto TOFFEE
CASADOCUMENTAÇÃOATUALIZAÇÕESVÍDEOSPESQUISADESCARREGARPATROCINADORESCONTATO


RESEARCH 》 CDN Introduction - Content Delivery Networks or Content Distribution Networks

A Website without CDN Network: As everyone knows in a most common typical simplest scenario, you will have a website hosted in a web-server. In most common cases a typical small website will be hosted in some web-server, provided by web-hosting service provider. And the website DNS domain name points to this hosting web-server. In a simple scenario like this when the user requests the pages (or in general we can say any content such as text pages, images, and other media), the end-user’s browser request reaches this web-server, and the web-server delivers the web-pages via HTTP Protocol.
CDN Introduction website without CDN

Local user Browser Cache: The process of page or content download is pretty straight forward in a web-browser. A web-browser will have a small local cache. So that if there is any future repetitive requests, instead each time fetching from the main website (web-server), the browser will load/render the pre-cached content directly in the browser interface if it finds that specific content already once stored earlier in its cache. This saves up a lot of traffic. Since most of the times any website will have a lot of common content, such as logos, some Java scripts, CSS Stylesheets and so on. But the only drawback is that if there is a small organization, then each user have to access the content atleast once, so that they get their browser cache stored with content. In this case it is a highly discrete or non-shared cache platform/scenario.

Local web Proxy/Caching Servers: So in a office, or any such setup, where there are N users accessing common Internet resource, we can deploy a common web proxy or caching server(s). These servers (or a server) will create a great opportunity of creating a localized common caching scenario. So in this mode assume if one user accesses a website for first time, assume few of its contents are cached in this caching server, then later that day whichever other user accesses the same content, they may receive cached content from this central caching/proxy server. This is a huge advantage. Once the cache is mature and holds enough cached contents, it will sometimes exponentially reduce the network load, and downloading repetitive data from Internet (or any network in general).

A Website via CDN Network: In this scenario, the main basic website acts much like a source or origin. It will contain the web-content but it will not serve the real end-users. Instead there is going to be a CDN Service provider, and his vast infrastructure with several distributed, so called CDN Nodes across Internet spread globally. When the end-user requests the website, it is these CDN caching nodes will actually server the content to the end users. The job of the CDN service provider is to provide a highly redundant load-sharing along with transparent/abstract infrastructure. The CDN provider will often point or assign a CDN node which is least used at that instance, also sometimes assigns dynamically a CDN Node which is geographically nearer to the end-user. Hence this reduces the download time, since it reduces the number of router hops in internet.
CDN Introduction website with CDN

A CDN Node is often a highly proprietary caching resource installed by the CDN Service provider, where when it gets a request of a content to be served from end-user browsers, it caches the pages/content from its neighboring CDN Nodes, or sometimes directly from the origin web-servers. So this will exponentially reduces the load on the origin webserver. It is like with CDN server, the load on the origin webserver is or can be reduced upto 70-80% or sometimes even more depending on the content nature and depending on static vs. dynamic content it has.

So this is how a basic CDN works, its significance and value addition for any website if it is served to users via CDN, versus served directly via single webserver (or just few redundant web-servers) without a CDN.

Apart from this there are various advantages in using a CDN within your deployments. To know more about CDN Advantages kindly read the full detailed article HERE.



Suggested Topics:


Generic CDN


Building my own CDN

💎 TOFFEE-MOCHA new bootable ISO: Download
💎 TOFFEE Data-Center Big picture and Overview: Download PDF


Tópicos recomendados:

DIY TOFFEE WAN Optimization Device with Intel Celeron Mini PC ↗
Saturday' 13-Mar-2021
Here is a step-by-step DIY to build your own Intel based Mini PC WAN Optimization Device with TOFFEE. I chose this below Intel Celeron Mini PC since it is fan-less aluminium case and as well it has 2 dedicated inbuilt Gigabit Ethernet ports. You can use one for LAN Network and one for WAN Network.

First TOFFEE-Mocha Code Release ↗
Saturday' 13-Mar-2021
TOFFEE-Mocha is my dream project which I thought working on it since several years. I want to make a WAN emulation software which is straight forward and simple to use. I used tc scripts along with iptables for testing my TOFFEE (and TrafficSqueezer before TOFFEE) and I am not quite satisfied with the same. As one can understand these scripts are not meant for WAN emulation.

TOFFEE-Mocha Documentation :: TOFFEE-Mocha-1.0.14-1-rpi2 - Raspberry Pi WAN Emulator ↗
Saturday' 13-Mar-2021

TOFFEE-DataCenter a TOFFEE variant for Data Center applications ↗
Saturday' 13-Mar-2021

TOFFEE-DataCenter :: Optimized ISP backbone networks for countries with slowest Internet Speed ↗
Saturday' 13-Mar-2021

TEST CASES :: TEST RESULTS :: Raspberry Pi WAN Emulator TOFFEE-Mocha-1.0.14-1-rpi2 ↗
Saturday' 13-Mar-2021



TOFFEE-Mocha - WAN Emulator :: TOFFEE-MOCHA-2.0.3-0-10-nov-2018-x86-64.iso ↗
Saturday' 13-Mar-2021
Download TOFFEE-MOCHA-2.0.3-0-10-nov-2018-x86-64.iso via Google Drive share: Live bootable x86-64 Debian Stretch 9.5 with light-weight LXDE UI ISO (includes source-code): TOFFEE-MOCHA-2.0.3-0-10-nov-2018-x86-64.iso You can find the source tar-ball in the /root folder. To know more about the project kindly refer TOFFEE- Mocha: News and Updates - Documentation. To know more about current specific release, objectives, features, release notes/updates, quick demo and future road-map, you can watch my video below.

TOFFEE-Mocha WAN Emulation software development - Update: 1-July-2016 ↗
Saturday' 13-Mar-2021
Today I got a feature request from Jonathan Withers. Jonathan is from a company called MultiWave Australia. He said he is able to get the TOFFEE-Mocha Raspberry Pi setup up and with that he is able to emulate geostationary satellite link. But he requested me is there a way to extend the constant packet delay from 40mS to 500mS. So as a part of his request I supported the same in the current ongoing development version of TOFFEE-Mocha.

TEST CASES :: TEST RESULTS :: TOFFEE-Mocha-1.0.32 asymmetric constant packet delay feature ↗
Saturday' 13-Mar-2021

TOFFEE-Butterscotch Bandwidth saver software development - Update: 28-Oct-2016 ↗
Saturday' 13-Mar-2021
Here is my first software development update of TOFFEE-Butterscotch. In my first TOFFEE-Butterscotch news update I have introduced about TOFFEE-Butterscotch research, project specifications, use-cases, etc. Introducing TOFFEE-Butterscotch Alerts: These are simple packet counters which corresponds to the filter type. For example if the incoming TCP-SYN packets are blocked then its corresponding alert counter will increment whenever such a packet arrives and gets filtered (dropped).



Featured Educational Video:
Assista no Youtube - [943//1] x23e TrueNAS ZFS Pool Resilver over and over again issue | ZFS NAS Storage | Forever Resilver ↗

VPN Network Optimization via TOFFEE WAN Optimization ↗
Saturday' 13-Mar-2021
VPN Networks may degrade network performance due to various packet processing overheads such as encryption and by adding extra network protocol header(s) (such as IPv4/IPv6, IPSec, etc). This may inflate near MTU sized packets and causes excessive packet fragmentation. Here are the few examples of packet processing involved in a VPN (or a VPN like) Tunnel. With TOFFEE you can optimize these packets even before they get processed on to a VPN device. TOFFEE optimizes packet contents (application payload and transport headers) so that these TOFFEE optimized packets when they get processed by VPN devices (or VPN software stack) they may never need further packet fragmentation. Here is a deployment scenario of TOFFEE with VPN devices.

TOFFEE-DataCenter screenshots on a Dual CPU - Intel(R) Xeon(R) CPU E5645 @ 2.40GHz - Dell Server ↗
Saturday' 13-Mar-2021

TOFFEE with Hardware Compression and Decompression Accelerator Cards ↗
Saturday' 13-Mar-2021
You can build a basic TOFFEE WAN Optimization hardware completely in software layer (i.e its networking data-plane and control-plane). And if you are a product manufacturer you can make commercial WAN Optimization products with TOFFEE with software layer alone. And if you choose to improve its performance, you can use any third-party PCIe Compression Accelerator cards.

WAN Optimization Network Stack Architecture - Linux Kernel vs Intel DPDK vs Custom Packet Forward ↗
Saturday' 13-Mar-2021



Assista no Youtube - [889//1] 280 WAN Optimization - Animated demo of Packet Optimization in TOFFEE-DataCenter ↗

Upgrading Ubuntu 17.10 to 18.04 via TOFFEE-DataCenter WAN Optimization Screenshots ↗
Saturday' 13-Mar-2021



Research :: Optimization of network data (WAN Optimization) at various levels:
Network File level network data WAN Optimization


Learn Linux Systems Software and Kernel Programming:
Linux, Kernel, Networking and Systems-Software online classes [CDN]


Hardware Compression and Decompression Accelerator Cards:
TOFFEE Architecture with Compression and Decompression Accelerator Card


TOFFEE-DataCenter on a Dell Server - Intel Xeon E5645 CPU:
TOFFEE-DataCenter screenshots on a Dual CPU - Intel(R) Xeon(R) CPU E5645 @ 2.40GHz - Dell Server