TOFFEEプロジェクト
ホームドキュメンテーション更新ビデオ研究ダウンロードスポンサー接触


RESEARCH 》 A study on Deep Space Networks (DSN)

When you are dealing Deep Space Networks (DSN) one among the most challenging parts is the Interplanetary distances and communicating data across such vast distances. This is where we are not dealing with common Internet type traffic such as HTTP/FTP/VoIP/etc but it is completely different when it comes to DSN so far. So optimizing data in DSN becomes mandatory. For example if you think one of the Mars Rovers, they have used LZO lossless compression. Although they do to an extent lossy compression on images shot by these space-probes at times they we may also need high-resolution detailed high-quality images. And sometimes it is not just photos sent back to the earth, at times the space probes may also report their health status, keep alive messages as well transmit the scientific research data such as data recorded in various sensors situated on-board.

Although we got space probes across the space and ISS (International Space Station) orbiting over Earth, we do not have a scenario yet something like human colonies/bases on Moon or Mars and other planets. Eventually when such things happen in around 2020-2030 or so as the way NASA and scientists predict, DSN is going to be a case where more private companies may offer their solutions. But before that we need to still solve some of the fundamental data communication challenges involved in DSN. This is on of the fields which I am actively involved since a decade.

Unlike here on Earth upgrading a piece of hardware or communication technology is just impossible to do on a space probe which may exist millions of miles away from Earth. This also makes this technology evolve quite slowly unlike Earth bound communication technologies such as Mobile communications, Satellite networks and so on. For further complete coverage of this topic kindly refer my below detailed video titled Deep Space Communication - Episode1.

Understanding Communication Speeds: Most DSN networks are radio-wave signal based and not light (photonic) based communication. Radio waves do not travel at the speed of light. It is also one of the reason for the slow-down of the DSN unlike ground or earth bound fibre optic links since in this case data travels almost (since the medium is not vacuum and speed of light depends on the medium) at the speed of light. Before we imagine network speeds in DSN, let us understand an ideal situation of speed of light between two points in space:

Distance Speed of Light
Earth <> Moon1.5 seconds
Earth <> Mars4 minutes (240 seconds)
Earth <> Sun8 minutes (480 seconds)
Earth <> Jupiter30 minutes (1800 seconds)
Earth <> Saturn1 hour (3600 seconds)
Earth <> Neptune4 hours (14400 seconds)
Earth <> Pluto4.6 hours (16560 seconds)

NOTE: Since we compute network speeds often in bits/sec (and latency in nano-seconds and milli-seconds), in the above chart I am converting everything in seconds to understand the scale.

So based on the above chart now we can understand the scale of complexity in DSN. This underscores a fundamental limitation of physics !

Communication Protocols for DSN: For DSN a complete new set of protocols are defined which is SCP (stands for Space Communications Protocol). There are various RFCs which are defined which is called as SCPS (where S stands for Specifications). There are various variants under SCPS are defined such as SCPS-FP, SCPS-TP, SCPS-SP and SCPS-NP. The biggest difference you may find in DSN is that the delay involved due to inter-planetary distances. So based on the distance you may experience communication delays, loss of packets, etc. Say for example if you think a successful connection is established (for example a TCP session/connection), you may have to-and-fro keep alive acknowledgement packets exchanged every few milliseconds. But whereas in a case of DSN you may experience this happening every few minutes or every few hours. So that is how bizarre it is. Although there is no packet exchanges happening in few minutes or hours you should understand this is due to vast distances involved.

These SCPS specifications are defined by a committee called as CCSDS (stands for Consultative Committee for Space Data Systems). This is a body which is formed as per collaborative effort of various space agencies across the world. An Internet spanning across multiple planets is termed as IPN (stands for Interplanetary Network or in short InterPlanet). For further complete coverage of this topic kindly refer my below detailed video titled Deep Space Communication - Episode2.

Lossless Compression Algorithms for DSN: A specific set of tailor made algorithms are required for space communications unlike the ones which are used in communications here on Earth. They have to be light-weight and at the same time super-efficient and should have least processing latencies. The communication data could be just anything such as scientific research data collected via space probe sensors or it could be hi-resolution photos sent back to earth or it could be commands sent to these probes via ground control crew. I have done extensive research on this for almost more than a decade on various lossless compression algorithms. This is a case where we are dealing optimizing real-time data. This is not a passive file compression something like creating a tar-ball or some zipfile. This is a case you are sending and receiving packets continuously and you are processing them in real-time.

NASA have their own lossless compression variants and often they are customized. One of the well known algorithms which NASA uses is the LOCO-I (stands for Low Complexity Lossless Compression) which is mainly meant for compressing images. LOCO-I is a kind of lossless compression variant of JPEG. Which is why it is also can be sometimes called as JPEG-LS (stands for JPEG-Lossless). Based on LOCO-I NASA did hardware based solution which is FPGA-LOCO. Since it is hardware based, it is good in performance, reliability and extremely energy efficient.

Apart from this CCSDS have their own variant of RICE lossless compression algorithm. For further complete coverage of this topic kindly refer my below detailed video titled Space Lossless Compression.

References:

NASA:

Wikipedia:

Other:



Suggested Topics:


WAN Optimization and Network Optimization

💎 TOFFEE-MOCHA new bootable ISO: Download
💎 TOFFEE Data-Center Big picture and Overview: Download PDF


おすすめトピック:

Demo TOFFEE-DataCenter WAN Optimization packaging feature ↗
Saturday' 13-Mar-2021

Introducing TOFFEE-Fudge - Network Packet Generator ↗
Saturday' 13-Mar-2021
TOFFEE Fudge is a simple intuitive Network Packet Generator which can be used to create custom test synthetic Network Packets and can be used in various applications such as networking research, network infrastructure troubleshooting, ethical hacking, as a network software development tool and so on.

Building my own CDN - Minify Script files - Update: 23-July-2016 ↗
Saturday' 13-Mar-2021
One of the suggestions Google PageSpeed Insights tool suggested for The TOFFEE Project website is to minify the css and java script files. Minify Script files: When you read online about minification of your web script files, often they highlight file size savings and thus resulting faster download time and better website performance.

Why TOFFEE is forked from TrafficSqueezer ↗
Saturday' 13-Mar-2021
TrafficSqueezer is an open-source WAN Optimization project. TrafficSqueezer is mainly a research project which is started around mid-2006. It is initially started as a research (or prototype) code even before it is officially registered in Sourceforge.net. But this code is just primitive user-space raw socket modules. This is later refined and a pre-alpha version is created. Followed by which Alpha release. This prototype code is moved from user-space to Linux Kernel (Kernel Space) and then the journey begin in terms of making a serious WAN Optimization solution. Once the pre-beta and beta releases are complete the mainstream series is started.

Bitcoin Mining - Blockchain Technology - Network Optimization via TOFFEE Data-Center WAN Optimization ↗
Saturday' 13-Mar-2021
Bitcoin Mining - Blockchain Technology - Network Optimization via TOFFEE Data-Center WAN Optimization

A study on WAN Optimization Techniques ↗
Saturday' 13-Mar-2021
There are various techniques with which one can optimize their WAN Network Data. Any long distance communication can be considered as WAN Network. A decade ago any network connecting two countries, considered as a WAN network, and a network within a city as MAN and soon. But these days in general any long distance communication is considered as WAN Network. Such as your Mobile communication networks, Satellite networks, Space Networks (Deep space networks), Trans-Atlantic cable networks, etc.



TOFFEE-DataCenter a TOFFEE variant for Data Center applications ↗
Saturday' 13-Mar-2021

TOFFEE (and TOFFEE-DataCenter) deployment with VPN devices ↗
Saturday' 13-Mar-2021
In case if you need to deploy TOFFEE along with your existing VPN devices you can deploy the same as shown below. This will allow your VPN devices to encrypt your TOFFEE WAN Optimized network data. NOTE: Make sure about the VPN deployment topology done in the right order. Else TOFFEE (LAN side) may get VPN encrypted packets which may not be possible (and or difficult) to further optimize. Hence always make sure to deploy them in a topology suggested below so that TOFFEE devices are out of VPN tunnel.

Optimization of network data (WAN Optimization) at various levels ↗
Saturday' 13-Mar-2021
WAN Network data can be optimized at various levels depending upon the network applications, protocols, topology and use-cases. So the amount of data you can optimize will depend on the strategy you choose to optimize. Such as: Network Packet level optimization, Session level optimization, File level optimization, etc.

Skype VOIP Data - WAN Acceleration ↗
Saturday' 13-Mar-2021



Featured Educational Video:
Youtubeで見る - [943//1] x23e TrueNAS ZFS Pool Resilver over and over again issue | ZFS NAS Storage | Forever Resilver ↗

Recording Lab Monthly off-grid power-consumption readings for research ↗
Saturday' 13-Mar-2021

Bitcoin Mining - Blockchain Technology - Network Optimization via TOFFEE Data-Center WAN Optimization ↗
Saturday' 13-Mar-2021
Bitcoin Mining - Blockchain Technology - Network Optimization via TOFFEE Data-Center WAN Optimization

TOFFEE-DataCenter screenshots on a Dual CPU - Intel(R) Xeon(R) CPU E5645 @ 2.40GHz - Dell Server ↗
Saturday' 13-Mar-2021

TOFFEE (and TOFFEE-DataCenter) optimized Satellite (inflight/marine/defense) ISP Networks ↗
Saturday' 13-Mar-2021
TOFFEE Optimized Satellite ISP Network: TOFFEE/TOFFEE-DataCenter can be used to optimize Satellite Networks (Satellite based Internet Networks, VoIP, Data, private leased-links) as shown. Ground station transponders can be connected via array of TOFFEE Devices and in the remote CPE can have dedicated or inbuilt TOFFEE with which you can establish a WAN Optimized Satellite Network Tunnel as shown.




TOFFEE (and TOFFEE-DataCenter) deployment in Large Infrastructure and or ISP Networks ↗
Saturday' 13-Mar-2021
Large Infrastructure or ISP setup: In case if you are an ISP and interested in deploying a large customer WAN Optimized network or an add-on enhanced (WAN Optimized) network for select few customers, then you can deploy something as shown below. Although this case is not meant for hobby/DIY users. This is a feasible solution for high-end professional application and the same can be deployed.



Research :: Optimization of network data (WAN Optimization) at various levels:
Network File level network data WAN Optimization


Learn Linux Systems Software and Kernel Programming:
Linux, Kernel, Networking and Systems-Software online classes


Hardware Compression and Decompression Accelerator Cards:
TOFFEE Architecture with Compression and Decompression Accelerator Card [CDN]


TOFFEE-DataCenter on a Dell Server - Intel Xeon E5645 CPU:
TOFFEE-DataCenter screenshots on a Dual CPU - Intel(R) Xeon(R) CPU E5645 @ 2.40GHz - Dell Server