TOFFEE项目
文档更新影片研究下载赞助商联系


DOCUMENTATION 》 TEST CASES :: TEST RESULTS :: TOFFEE-Mocha-1.0.32 asymmetric constant packet delay feature

Here are the TOFFEE-Mocha test cases and test results of new asymmetric constant packet delay feature supported in the new TOFFEE-Mocha-1.0.32 release. Click HERE to download TOFFEE-Mocha-1.0.32-1-x86_64.tar.xz and TOFFEE-Mocha-1.0.32-1-i386.tar.xz.

Here is my test network topology:
TOFFEE-Mocha asymmetric packet delay test setup

Test case1 :: no packet delay: This is a reference test with no packet delay.
TOFFEE-Mocha-1.0.32 WAN Emulator network test tool Test case1 - no packet delay

kiran@WD-250GB:~$ ping 192.168.0.1
PING 192.168.0.1 (192.168.0.1) 56(84) bytes of data.
64 bytes from 192.168.0.1: icmp_seq=1 ttl=64 time=1.34 ms
64 bytes from 192.168.0.1: icmp_seq=2 ttl=64 time=1.34 ms
64 bytes from 192.168.0.1: icmp_seq=3 ttl=64 time=1.36 ms
64 bytes from 192.168.0.1: icmp_seq=4 ttl=64 time=1.43 ms
^C
--- 192.168.0.1 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3004ms
rtt min/avg/max/mdev = 1.343/1.372/1.432/0.057 ms
kiran@WD-250GB:~$

Test case2 :: 1ms per packet delay: This will enable 1ms constant packet delay for all packets (i.e upstream and downstream).
TOFFEE-Mocha-1.0.32 WAN Emulator network test tool Test case2 - 1ms per packet delay

kiran@WD-250GB:~$ ping 192.168.0.1
PING 192.168.0.1 (192.168.0.1) 56(84) bytes of data.
64 bytes from 192.168.0.1: icmp_seq=1 ttl=64 time=3.38 ms
64 bytes from 192.168.0.1: icmp_seq=2 ttl=64 time=3.28 ms
64 bytes from 192.168.0.1: icmp_seq=3 ttl=64 time=3.49 ms
64 bytes from 192.168.0.1: icmp_seq=4 ttl=64 time=3.34 ms
^C
--- 192.168.0.1 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3004ms
rtt min/avg/max/mdev = 3.288/3.377/3.493/0.094 ms
kiran@WD-250GB:~$

Test case3 :: 1ms upload alone packet delay: This will enable 1ms constant packet delay for all upstream packets alone.
TOFFEE-Mocha-1.0.32 WAN Emulator network test tool Test case3 - 1ms upload alone packet delay

kiran@WD-250GB:~$ ping 192.168.0.1
PING 192.168.0.1 (192.168.0.1) 56(84) bytes of data.
64 bytes from 192.168.0.1: icmp_seq=1 ttl=64 time=2.49 ms
64 bytes from 192.168.0.1: icmp_seq=2 ttl=64 time=2.51 ms
64 bytes from 192.168.0.1: icmp_seq=3 ttl=64 time=2.32 ms
64 bytes from 192.168.0.1: icmp_seq=4 ttl=64 time=2.30 ms
^C
--- 192.168.0.1 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3004ms
rtt min/avg/max/mdev = 2.300/2.408/2.515/0.108 ms
kiran@WD-250GB:~$

Test case4 :: 1ms download alone packet delay: This will enable 1ms constant packet delay for all downstream packets alone.
TOFFEE-Mocha-1.0.32 WAN Emulator network test tool Test case4 - 1ms download alone packet delay

kiran@WD-250GB:~$ ping 192.168.0.1
PING 192.168.0.1 (192.168.0.1) 56(84) bytes of data.
64 bytes from 192.168.0.1: icmp_seq=1 ttl=64 time=2.31 ms
64 bytes from 192.168.0.1: icmp_seq=2 ttl=64 time=2.33 ms
64 bytes from 192.168.0.1: icmp_seq=3 ttl=64 time=2.41 ms
64 bytes from 192.168.0.1: icmp_seq=4 ttl=64 time=2.41 ms
^C
--- 192.168.0.1 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3004ms
rtt min/avg/max/mdev = 2.313/2.367/2.416/0.067 ms
kiran@WD-250GB:~$

Test case5 :: 1ms download packet delay + 1ms per packet delay: This will enable 1ms constant packet delay for all downstream packets along with constant 1ms per-packet delay.
TOFFEE-Mocha-1.0.32 WAN Emulator network test tool Test case5 - 1ms download packet delay + 1ms per packet delay

kiran@WD-250GB:~$ ping 192.168.0.1
PING 192.168.0.1 (192.168.0.1) 56(84) bytes of data.
64 bytes from 192.168.0.1: icmp_seq=1 ttl=64 time=4.36 ms
64 bytes from 192.168.0.1: icmp_seq=2 ttl=64 time=4.34 ms
64 bytes from 192.168.0.1: icmp_seq=3 ttl=64 time=4.43 ms
64 bytes from 192.168.0.1: icmp_seq=4 ttl=64 time=4.46 ms
^C
--- 192.168.0.1 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3004ms
rtt min/avg/max/mdev = 4.342/4.401/4.465/0.049 ms
kiran@WD-250GB:~$

Test case6 :: 1ms upload packet delay + 1ms per packet delay: This will enable 1ms constant packet delay for all upstream packets along with constant 1ms per-packet delay.
TOFFEE-Mocha-1.0.32 WAN Emulator network test tool Test case6 - 1ms upload packet delay + 1ms per packet delay

kiran@WD-250GB:~$ ping 192.168.0.1
PING 192.168.0.1 (192.168.0.1) 56(84) bytes of data.
64 bytes from 192.168.0.1: icmp_seq=1 ttl=64 time=4.26 ms
64 bytes from 192.168.0.1: icmp_seq=2 ttl=64 time=4.46 ms
64 bytes from 192.168.0.1: icmp_seq=3 ttl=64 time=4.35 ms
64 bytes from 192.168.0.1: icmp_seq=4 ttl=64 time=4.47 ms
^C
--- 192.168.0.1 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3003ms
rtt min/avg/max/mdev = 4.260/4.389/4.472/0.087 ms
kiran@WD-250GB:~$

Test case7 :: 1ms upload packet delay + 1ms download packet delay + 1ms per packet delay: This will enable 1ms constant packet delay for all upstream and downstream packets along with constant 1ms per-packet delay.
TOFFEE-Mocha-1.0.32 WAN Emulator network test tool Test case7 - 1ms upload packet delay + 1ms download packet delay + 1ms per packet delay

kiran@WD-250GB:~$ ping 192.168.0.1
PING 192.168.0.1 (192.168.0.1) 56(84) bytes of data.
64 bytes from 192.168.0.1: icmp_seq=1 ttl=64 time=5.26 ms
64 bytes from 192.168.0.1: icmp_seq=2 ttl=64 time=5.41 ms
64 bytes from 192.168.0.1: icmp_seq=3 ttl=64 time=5.66 ms
64 bytes from 192.168.0.1: icmp_seq=4 ttl=64 time=5.31 ms
64 bytes from 192.168.0.1: icmp_seq=5 ttl=64 time=5.37 ms
64 bytes from 192.168.0.1: icmp_seq=6 ttl=64 time=5.29 ms
64 bytes from 192.168.0.1: icmp_seq=7 ttl=64 time=5.41 ms
^C
--- 192.168.0.1 ping statistics ---
7 packets transmitted, 7 received, 0% packet loss, time 6009ms
rtt min/avg/max/mdev = 5.260/5.391/5.662/0.130 ms
kiran@WD-250GB:~$



建议主题:


TOFFEE-Mocha - WAN Emulator


Categories

💎 TOFFEE-MOCHA new bootable ISO: Download
💎 TOFFEE Data-Center Big picture and Overview: Download PDF


推荐主题:

TOFFEE hardware selection guide ↗
Saturday' 13-Mar-2021
When you build a WAN Optimization device with TOFFEE the entire packet processing (data optimization) takes place in software layer or in other words more precisely Operating System kernel space. However if you have any compression or encryption hardware accelerator hardware card the parts of the TOFFEE packet processing modules can be offloaded to hardware layer and thus improving its efficiency.

Upgrading Ubuntu 17.10 to 18.04 via TOFFEE-DataCenter WAN Optimization Screenshots ↗
Saturday' 13-Mar-2021

Network MTU research and optimization of WAN Links ↗
Saturday' 13-Mar-2021
Network MTU research and optimization of WAN Links

TOFFEE-DataCenter a TOFFEE variant for Data Center applications ↗
Saturday' 13-Mar-2021

TOFFEE-DataCenter with GlusterFS Storage Cluster ↗
Saturday' 13-Mar-2021

Network Latency in WAN Networks and performance optimization ↗
Saturday' 13-Mar-2021
Here is my video article on Network Latency in WAN Networks (such as long distance Satellite links, etc) and how you can optimize the same to achieve better network performance.



TOFFEE Download :: TOFFEE-1.1.70-1-portable ↗
Saturday' 13-Mar-2021

Building my own CDN - Google PageSpeed Insights - Update: 22-Jul-2016 ↗
Saturday' 13-Mar-2021
Ever since after I launched my new The TOFFEE Project website on 1-May'2016, I can see there is a steep increase in traffic. Soon after the launch when I monitored its Alexa rankings it was reporting about 12 Million or so. But once it is getting more and more traffic the Alexa rankings shot up and now currently it shows around 2 Million (as on 22-July-2016). Alexa is an excellent tool to monitor your overall website global ranking and indirectly its performance. Unlike Google Analytics which is bound one or other way into Google's SEO. Alexa gives you a second opinion about your website's growth.

Raspberry Pi as a Networking Device ↗
Saturday' 13-Mar-2021
Raspberry Pi is often used as a single board computer for applications such as IoT, hobby projects, DIY, education aid, research and prototyping device. But apart from these applications Raspberry Pi can be used for real-world applications such as in making a full-fledged networking devices. Raspberry Pi is a single board ARM based hardware which is why it is also classified as ARM based SoC. Since it is ARM based it is highly efficient, tiny form-factor and lower in power consumption with moderate computational power. This will allow it to work several hours on emergency battery backup power supply such as low-cost domestic UPS and or some renewable energy source, which is a prerequisite for a typical networking device.

TOFFEE-DataCenter :: Features Supported ↗
Saturday' 13-Mar-2021
Here is a list of TOFFEE-DataCenter features supported. TOFFEE-DataCenter currently supports some of the important features such as loss-less network data compression, Packet Deduplication (protocols/applications supported), Application Acceleration, TCP Acceleration, dynamic MTU optimization, data packaging, hardware offload support, etc.



Featured Educational Video:
在YouTube上观看 - [8613//1] x254 Kernel Init Code without Kernel Module - Kernel Programming Tip #linode ↗

TOFFEE-DataCenter a TOFFEE variant for Data Center applications ↗
Saturday' 13-Mar-2021

TOFFEE (and TOFFEE-DataCenter) deployment in Large Infrastructure and or ISP Networks ↗
Saturday' 13-Mar-2021
Large Infrastructure or ISP setup: In case if you are an ISP and interested in deploying a large customer WAN Optimized network or an add-on enhanced (WAN Optimized) network for select few customers, then you can deploy something as shown below. Although this case is not meant for hobby/DIY users. This is a feasible solution for high-end professional application and the same can be deployed.

TOFFEE-Mocha WAN Emulation software development - Update: 20-Oct-2016 ↗
Saturday' 13-Mar-2021
I was doing some specific tests in my TOFFEE and TOFFEE-DataCenter (WAN optimization) scenarios such as variable upload and download speeds. And I was also doing some experiments with speedtest.net and I did some of these tests with TOFFEE-Mocha. I realized there is a case that I can introduce asymmetric constant delays so that you can get different download speed and a different upload speed. And in some cases much faster download speeds and relatively slower upload speeds.

Network Packet Queue or Buffer - Packet Flow Control, Fragmentation and MTU ↗
Saturday' 13-Mar-2021
Network Packet Queue or Buffer - Packet Flow Control, Fragmentation and MTU




TCP Tune-up and Performance Analysis Graphs - Congestion Control - Research - Dos and Don'ts ↗
Saturday' 13-Mar-2021



Research :: Optimization of network data (WAN Optimization) at various levels:
Network File level network data WAN Optimization


Learn Linux Systems Software and Kernel Programming:
Linux, Kernel, Networking and Systems-Software online classes [CDN]


Hardware Compression and Decompression Accelerator Cards:
TOFFEE Architecture with Compression and Decompression Accelerator Card [CDN]


TOFFEE-DataCenter on a Dell Server - Intel Xeon E5645 CPU:
TOFFEE-DataCenter screenshots on a Dual CPU - Intel(R) Xeon(R) CPU E5645 @ 2.40GHz - Dell Server