O projeto TOFFEE
CASADOCUMENTAÇÃOATUALIZAÇÕESVÍDEOSPESQUISADESCARREGARPATROCINADORESCONTATO


DOCUMENTATION 》 TEST CASES :: TEST RESULTS :: TOFFEE-Mocha-1.0.14 Development version

Here are the TOFFEE-Mocha test cases and test results of the upcoming new TOFFEE-Mocha which is still under development. The features of this TOFFEE-Mocha are discussed in the software development update: TOFFEE-Mocha WAN Emulation software development - Update: 1-July-2016

Test case1 :: 999 millisecond constant packet delay: As you can see unlike 40 milliseconds the maximum limit which existed earlier, the new 999 milliseconds delay range allows users to slow down the transfer rates even further.

kiran@HP-ENVY-15:~/temp$ ping 192.168.0.1 -s 1000
PING 192.168.0.1 (192.168.0.1) 1000(1028) bytes of data.
1008 bytes from 192.168.0.1: icmp_seq=1 ttl=64 time=2000 ms
1008 bytes from 192.168.0.1: icmp_seq=2 ttl=64 time=2000 ms
1008 bytes from 192.168.0.1: icmp_seq=3 ttl=64 time=2000 ms
1008 bytes from 192.168.0.1: icmp_seq=4 ttl=64 time=2000 ms
1008 bytes from 192.168.0.1: icmp_seq=5 ttl=64 time=2998 ms
1008 bytes from 192.168.0.1: icmp_seq=6 ttl=64 time=2997 ms
1008 bytes from 192.168.0.1: icmp_seq=7 ttl=64 time=3995 ms
1008 bytes from 192.168.0.1: icmp_seq=8 ttl=64 time=3985 ms
1008 bytes from 192.168.0.1: icmp_seq=9 ttl=64 time=3984 ms
1008 bytes from 192.168.0.1: icmp_seq=10 ttl=64 time=3984 ms
1008 bytes from 192.168.0.1: icmp_seq=11 ttl=64 time=3983 ms
1008 bytes from 192.168.0.1: icmp_seq=12 ttl=64 time=3982 ms
1008 bytes from 192.168.0.1: icmp_seq=13 ttl=64 time=3984 ms
1008 bytes from 192.168.0.1: icmp_seq=14 ttl=64 time=3982 ms
^C
--- 192.168.0.1 ping statistics ---
18 packets transmitted, 14 received, 22% packet loss, time 17007ms
rtt min/avg/max/mdev = 2000.042/3277.214/3995.537/873.965 ms, pipe 4
kiran@HP-ENVY-15:~/temp$

Test case2 :: 500 millisecond constant packet delay: With 500 milliseconds you get roughly double the performance of 999 milliseconds.

kiran@HP-ENVY-15:~/temp$ ping 192.168.0.1 -s 1000
PING 192.168.0.1 (192.168.0.1) 1000(1028) bytes of data.
1008 bytes from 192.168.0.1: icmp_seq=1 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=2 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=3 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=4 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=5 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=6 ttl=64 time=1488 ms
1008 bytes from 192.168.0.1: icmp_seq=7 ttl=64 time=1481 ms
1008 bytes from 192.168.0.1: icmp_seq=8 ttl=64 time=1481 ms
1008 bytes from 192.168.0.1: icmp_seq=9 ttl=64 time=1008 ms
1008 bytes from 192.168.0.1: icmp_seq=10 ttl=64 time=1002 ms
^C
--- 192.168.0.1 ping statistics ---
11 packets transmitted, 10 received, 9% packet loss, time 10017ms
rtt min/avg/max/mdev = 1002.077/1147.151/1488.063/220.133 ms, pipe 2
kiran@HP-ENVY-15:~/temp$

Test case3 :: 500 millisecond constant packet delay + random packet delay: With constant delay (in this case 500 milliseconds) if you enable the new random packet delay feature, it will skip delay randomly few packets. Which can be controlled via random delay factor. In this case the random delay factor value is set to 1. And you can see below few packets are not delayed. Hence their ping response time almost reduced to half (i.e around 500 ms).

kiran@HP-ENVY-15:~/temp$ ping 192.168.0.1 -s 1000
PING 192.168.0.1 (192.168.0.1) 1000(1028) bytes of data.
1008 bytes from 192.168.0.1: icmp_seq=1 ttl=64 time=1503 ms
1008 bytes from 192.168.0.1: icmp_seq=2 ttl=64 time=1497 ms
1008 bytes from 192.168.0.1: icmp_seq=3 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=4 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=5 ttl=64 time=1001 ms
1008 bytes from 192.168.0.1: icmp_seq=6 ttl=64 time=1001 ms
1008 bytes from 192.168.0.1: icmp_seq=7 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=8 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=9 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=10 ttl=64 time=419 ms
1008 bytes from 192.168.0.1: icmp_seq=11 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=12 ttl=64 time=1001 ms
1008 bytes from 192.168.0.1: icmp_seq=13 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=14 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=15 ttl=64 time=1001 ms
1008 bytes from 192.168.0.1: icmp_seq=16 ttl=64 time=502 ms
1008 bytes from 192.168.0.1: icmp_seq=17 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=18 ttl=64 time=502 ms
1008 bytes from 192.168.0.1: icmp_seq=19 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=20 ttl=64 time=1001 ms
1008 bytes from 192.168.0.1: icmp_seq=21 ttl=64 time=1002 ms
^C
--- 192.168.0.1 ping statistics ---
22 packets transmitted, 21 received, 4% packet loss, time 21029ms
rtt min/avg/max/mdev = 419.093/974.135/1503.026/250.662 ms, pipe 2
kiran@HP-ENVY-15:~/temp$

Random Packet delay: As discussed in my VLOG/update earlier, the idea of Random packet delay is to introduce the fluctuating, bursty nature of packet flow. So here are various tests done which shows the same in action. These tests below are performed while downloading a large file by enabling random packet delay along with various values of constant packet delay.

Test case4 :: 2 millisecond constant packet delay + random packet delay: With constant delay of 2 millisecond and random packet delay you can notice the blue curve which almost appears constant. The traffic in this case is bursty but it is not that significant to notice in the graph shown below.
TOFFEE_Mocha_2ms_delay_with_random_packet_delay

Test case5 :: 10 millisecond constant packet delay + random packet delay: With constant delay of 10 millisecond and random packet delay you can notice the blue curve which almost appears constant. The traffic in this case is bursty but it is not that significant to notice in the graph shown below. But it appears somewhat fluctuating than the 5 millisecond test case4 above.
TOFFEE_Mocha_10ms_delay_with_random_packet_delay

Test case6 :: 200 millisecond constant packet delay + random packet delay: With constant delay of 200 millisecond and random packet delay you can notice the fluctuating blue curve. With this we can understand the true purpose of random packet delay.
TOFFEE_Mocha_200ms_delay_with_random_packet_delay

Test case7 :: 200 millisecond constant packet delay + WITHOUT random packet delay: With constant delay of 200 millisecond and WITHOUT random packet delay feature enabled you can notice the steady blue curve. This is a direct comparison of a test case with constant packet delay 200 millisecond with and without random packet delay. With random packet delay it makes the network performance choppy, fluctuating and bursty, but without random packet delay feature the network performance appears almost constant.
TOFFEE_Mocha_200ms_delay_without_random_packet_delay

So in my next upcoming TOFFEE-Mocha release I may include all these new features and updated old features. If you are in need of any specific feature (or scenario) you can kindly let know. If plausible and feasible I can support the same and release as a part of my upcoming TOFFEE-Mocha release. Kindly stay tuned !



Tópicos sugeridos:


TOFFEE-Mocha - WAN Emulator


Categories

💎 TOFFEE-MOCHA new bootable ISO: Download
💎 TOFFEE Data-Center Big picture and Overview: Download PDF


Tópicos recomendados:

A study on WAN Optimization Techniques ↗
Saturday' 13-Mar-2021
There are various techniques with which one can optimize their WAN Network Data. Any long distance communication can be considered as WAN Network. A decade ago any network connecting two countries, considered as a WAN network, and a network within a city as MAN and soon. But these days in general any long distance communication is considered as WAN Network. Such as your Mobile communication networks, Satellite networks, Space Networks (Deep space networks), Trans-Atlantic cable networks, etc.

LoRaWAN - Network Optimization via TOFFEE WAN Optimization ↗
Saturday' 13-Mar-2021
LoRaWAN - Network Optimization via TOFFEE WAN Optimization

IP Header Compression in WAN Links and TOFFEE-DataCenter WAN Optimization ↗
Saturday' 13-Mar-2021

A study on Deep Space Networks (DSN) ↗
Saturday' 13-Mar-2021
When you are dealing Deep Space Networks (DSN) one among the most challenging parts is the Interplanetary distances and communicating data across such vast distances. This is where we are not dealing with common Internet type traffic such as HTTP/FTP/VoIP/etc but it is completely different when it comes to DSN so far. So optimizing data in DSN becomes mandatory. For example if you think one of the Mars Rovers, they have used LZO lossless compression.

Replacing in Lab Intel Core i7 5820K Desktop PC with Intel Celeron 1037U Mini-PC ↗
Saturday' 13-Mar-2021
As a research experiment I replaced my Intel Core i7 5820K desktop PC with my Intel Celeron 1037U Mini-PC as my everyday desktop system. This is an attempt to reduce my overall monthly power consumption. As well an attempt to do feasibility tests and research to know how far Mini PC will dominate the market in future and to study the real potential of Mini PCs.

TOFFEE-DataCenter Download :: TOFFEE-DATACENTER-1.2.2-1-portable ↗
Saturday' 13-Mar-2021



Introducing TrueBench - a high resolution CPU benchmarking system ↗
Saturday' 13-Mar-2021
TrueBench is an unique open-source benchmarking system in which the core system performance and efficiency parameters are measured at extreme high resolution in the order of several million/billion µ-seconds for a given specific task. TrueBench is a part of The TOFFEE Project research. With TrueBench Raspberry Pi 3, Raspberry Pi 2B, Raspberry Pi 2 and other embedded SoC devices are benchmarked and you can do a comparative analysis with standard mainstream x86 devices.

TOFFEE (and TOFFEE-DataCenter) optimized Mobile Wireless Backhaul Networks ↗
Saturday' 13-Mar-2021
TOFFEE can be used to optimize expensive Wireless backhaul network infrastructure. TOFFEE can be deployed over existing slow or often outdated old backhaul networks too. This will leverage mobile ISPs and network service providers to reduce their bulk IT CapEx and OpEx Costs.

Bufferbloat in a Networking Device or an Appliance ↗
Saturday' 13-Mar-2021

Internet optimization through TOFFEE-DataCenter WAN Optimization Demo ↗
Saturday' 13-Mar-2021



Featured Educational Video:
Assista no Youtube - [8613//1] x254 Kernel Init Code without Kernel Module - Kernel Programming Tip #linode ↗

TOFFEE (and TOFFEE-DataCenter) deployment with web-proxy cache ↗
Saturday' 13-Mar-2021
If you want to deploy TOFFEE along with a web-proxy cache (such as Squid Proxy) you can deploy the same as shown below. TOFFEE does not cache files. TOFFEE does packet level network optimization. So if you want caching your web content you can use transparent mode web-proxy cache intercepting your WAN links. A web-proxy may reduce amount of data being processed (optimized) within these TOFFEE devices and so reduce the CPU overheads and improve its performance.

TOFFEE-DataCenter as a VNF for NFV ↗
Saturday' 13-Mar-2021

Upgrading Ubuntu 17.10 to 18.04 via TOFFEE-DataCenter WAN Optimization Screenshots ↗
Saturday' 13-Mar-2021

TOFFEE Benchmarks :: TOFFEE-1.1.28 ↗
Saturday' 13-Mar-2021
Here is the TOFFEE WAN Optimization benchmarks of the TOFFEE version: TOFFEE-1.1.28. This is the current TOFFEE development version till date (2-Jul-2016). This is a HPC TOFFEE variant meant for high-end custom build servers and high-end desktops (i.e High Performance Computing a.k.a HPC). TOFFEE built this way often needs customized kernel compilation and build such as processor specific and hardware specific tune-ups since it is highly CPU intensive (if not offloaded via Hardware Accelerator Cards).



Assista no Youtube - [1888//1] Deep Space Communication - Episode1 - Introduction ↗

YouTube Video Network Traffic Optimization - WAN Optimization Demo ↗
Saturday' 13-Mar-2021



Research :: Optimization of network data (WAN Optimization) at various levels:
Network File level network data WAN Optimization


Learn Linux Systems Software and Kernel Programming:
Linux, Kernel, Networking and Systems-Software online classes [CDN]


Hardware Compression and Decompression Accelerator Cards:
TOFFEE Architecture with Compression and Decompression Accelerator Card [CDN]


TOFFEE-DataCenter on a Dell Server - Intel Xeon E5645 CPU:
TOFFEE-DataCenter screenshots on a Dual CPU - Intel(R) Xeon(R) CPU E5645 @ 2.40GHz - Dell Server