Проект TOFFEE
ГЛАВНАЯДОКУМЕНТАЦИЯОБНОВЛЕНИЕВИДЕОИССЛЕДОВАНИЕСКАЧАТЬСПОНСОРЫконтакт


RESEARCH 》 Power consumption of my Home Lab devices for research

AMD RYZEN 3 1200 - FreeNAS Storage array build
  • CPU: AMD Ryzen 3 1200 (4 cores/4 threads)
  • RAM: Corsair Vengeance 8GB DDR4 LPX 2400MHz C16 Kit
  • Motherboard: Gigabyte GA-A320M-HD2 AM44
  • Graphics/Display: Asus Geforce 210GT 1GB DDR3
  • PSU: Circle CPH698V12-400
  • Storage: WDC WD10JPVX-75JC3T0 - WD 1TB HDD
System BIOS53 watts
Idle System (Linux Ubuntu OS)52 watts
Casual browsing53 watts
Youtube video playback60 watts
Kernel compilation with 4-threads "make -j4" (99% load)74 watts
Kernel compilation with 3-threads "make -j3" (80% load)71 watts

My Intel Core i7-5820K - Desktop build
  • CPU: Intel Core i7-5820K (6 cores/12 threads)
  • RAM: Corsair PC2800 DDR4 14GB Kit
  • Motherboard: Gigabyte X99-UD4
  • Graphics/Display: Asus Geforce 210GT 1GB DDR3
  • PSU: Corsair VS450
  • CPU Liquid Cooling system: Cooler Master Nepton 240m
  • Storage: Transcend TS128GSSD370 128GB SSD
Idle System (Linux Ubuntu OS)70 watts
System BIOS90 watts
Linux kernel compilation (80%) load150 watts

My Intel Celeron CPU 1037U Mini PC WAN Optimization Device
  • CPU: Intel Celeron CPU 1037U
  • RAM: DDR3 PC3L 4GB
  • Storage: Transcend TS128GSSD370 128GB SSD
Idle System (Linux Ubuntu OS)18-20 watts
System BIOS16.5 watts
Linux kernel compilation (95%) load21-24 watts

My HP Envy 15-J111TX Laptop
  • CPU: Intel Corei7-4700MQ
  • RAM: DDR3 PC3L 12GB
  • Storage: WD Blue 250GB Scorpio HDD
Idle System (Linux Ubuntu OS) charging44 watts
Idle System (Linux Ubuntu OS) charged15 watts
Poweroff charging28 watts
Poweroff charged0.1 watts
Poweron charged suspend0.75 watts
Linux kernel compilation (95%) load charging90 watts
Linux kernel compilation (95%) load charged69 watts

My Dell 15R 5537 Laptop
  • CPU: Intel Corei7-4500U
  • RAM: DDR3 PC3L 8GB
  • Storage: Seagate 320GB Momentus HDD
Idle System (Linux Ubuntu OS) charging42 watts
Idle System (Linux Ubuntu OS) charged10 watts
Poweroff charging29 watts
Poweroff charged0.1 watts
Poweron charged suspend0.70 watts
Linux kernel compilation (95%) load charging60 watts
Linux kernel compilation (95%) load charged30 watts

My Acer Aspire 4810T Laptop
  • CPU: Intel Core Solo SU3500 1.4 GHz
  • RAM: DDR3 PC3 4GB
  • Storage: WD Blue 250GB Scorpio HDD
  * No Battery, so no charging.
Idle System (Linux Manjaro OS)16.23 watts
System BIOS24.30 watts
Casual Browsing22.27 watts
Youtube Playback22.45 watts

Raspberry Pi2 Device
  • Powered via 2Amp USB power-supply
  • Raspbian OS
  • USB mouse and USB keyboard connected
Casual browsing2.6 - 3 watts
Youtube video playback (25% load)3 - 3.5 watts
Kernel compilation with 4-threads "make -j4" (99% load)3.9 - 4 watts
Kernel compilation with 3-threads "make -j3"3.67 - 3.75 watts
idle device with no keyboard and no mouse2.08 - 2.1 watts

NETGEAR RN104 ReadyNAS
  • 2x 2.5'' Laptop HDD drives
  • 2x 3.5'' Desktop HDD drives
  • Single x-RAID volume with 4 HDD drives
Device off but plugged-in0.58 watts
Idle device after booting28 watts
File copy (write operation)28.7 watts
RAID Volume scrub operation29.5 watts

APC BX600C-IN UPS - APC Back-UPS 600(UPS not powered-on but connected to live power socket)
Standby Charging13.5 watts
Standby not-Charging7.8 watts

APC BX600CI-IN UPS - APC Back-UPS 600(UPS not powered-on but connected to live power socket)
Standby Charging9.5 watts
Standby not-Charging10-0.9 watts

BenQ LED Monitor 24'' GW2470HM
off plugged-in0.00 watts
Dim11.7 watts

LG LCD TV Monitor 23'' M237WA-PT
off plugged-in0.8 watts
Dim33 watts
Bright45 watts

Samsung LCD Monitor 22'' 2243NWX
off plugged-in0.7 watts
Dim20 watts
Bright33.5 watts

Power consumption of my Home Lab devices for research

Here is my power-consumption measurements of various devices deployed within my home lab. I measured via my kill-a-watt sort of power-meter which is fairly reliable and accurate. I checked its accuracy with various standard load such as Philips LED laps and other constant power-consuming devices to make sure that the power-meter is precise.

So far I maintained this data in my personal Google drive spreadsheet documents. But now I thought perhaps its good to share these numbers so that it is useful for various users to access their equipment such as:

  • decide UPS and battery backup ratings
  • off-grid solar power installations
  • choose new upgraded hardware which consumes less power and deliver better performance such as SSD over traditional HDD, new CPU, new Monitor, new laptop, servers, desktops and so on. And discard obsolete old hardware.
  • choosing the right PSU (power supply unit) for your desktop PC build

Before posting this article I shot a VLOG regarding the same and posted in my Youtube channel The Linux Channel. You can kindly watch the same:

Explore my lab's historical month wise power-usage trends: I started logging my entire lab monthly power-consumption readings. You can read the article HERE.

Off-Grid Solar Power System for Raspberry Pi: When you choose to use your Raspberry Pi device as your IoT based remote weather station or if you are building Linux kernel (like kernel compilation) within the same, you need a good uninterrupted power source (UPS). But if you are using it on site or in some research camping location you can choose to power your Raspberry Pi device with your custom off-grid solar power source. Kindly read my complete article about the same HERE.
Off-Grid Solar Power System for Raspberry Pi



Suggested Topics:


Generic Home Lab Research

💎 TOFFEE-MOCHA new bootable ISO: Download
💎 TOFFEE Data-Center Big picture and Overview: Download PDF


Рекомендуемые темы:

TOFFEE-Mocha WAN Emulation software development - Update: 15-July-2016 ↗
Saturday' 13-Mar-2021
Today I completed doing all the changes which are meant for the new upcoming TOFFEE-Mocha release. I have increased the resolution and the range of all factor variables. Instead 1 to 10 range now they have a range of 1 to 30. Unlike before the value 1 means it is lot more intense (or in some cases less intense) and the uppermost value 30 means lot less intense (or in some cases lot intense).

My Lab Battery Purchase and Service logs for Research ↗
Saturday' 13-Mar-2021
Here is a complete log of my lab battery purchase, service record which I maintain in Google drive. These I use for my home (or my family generic use) as well as a part of my home lab. I maintain a detailed log this way to monitor the failure rate of these batteries. This will allow me to select a specific brand/model which has higher success rate and to monitor any premature failure/expiry. The service log helps me to monitor and schedule the next service routine so that I can maintain these batteries in tip-top condition.

Tracking Live TCP Sessions (connections) - WAN Optimization Device ↗
Saturday' 13-Mar-2021

The TOFFEE Project :: TOFFEE-DataCenter :: WAN Optimization ↗
Saturday' 13-Mar-2021
The TOFFEE Project :: TOFFEE-DataCenter :: Linux Open-Source WAN Optimization

Tweaking Network Latency - Live Demo - via TOFFEE-DataCenter ↗
Saturday' 13-Mar-2021

YouTube Video Network Traffic Optimization - WAN Optimization Demo ↗
Saturday' 13-Mar-2021



TOFFEE Documentation :: TOFFEE-1.1.24-3-rpi2 ↗
Saturday' 13-Mar-2021
Here is my VLOG Youtube video of the same which includes details about version release notes, future road-map and so on. The TOFFEE release is highly optimized and customized for hardware platforms such as x86-64 based Intel NUC and other Intel mobile computing platforms such as laptops and so on. This version (or release) is not suited and so not recommended to be used for high-end desktop and server hardware platform.

Setting up a WAN Emulator within VirtualBox ↗
Saturday' 13-Mar-2021

TOFFEE with Hardware Compression and Decompression Accelerator Cards ↗
Saturday' 13-Mar-2021
You can build a basic TOFFEE WAN Optimization hardware completely in software layer (i.e its networking data-plane and control-plane). And if you are a product manufacturer you can make commercial WAN Optimization products with TOFFEE with software layer alone. And if you choose to improve its performance, you can use any third-party PCIe Compression Accelerator cards.

TOFFEE Data-Center optimized Internet of Things (IoT) Platform ↗
Saturday' 13-Mar-2021



Featured Educational Video:
Watch on Youtube - [8613//1] x254 Kernel Init Code without Kernel Module - Kernel Programming Tip #linode ↗

TOFFEE (and TOFFEE-DataCenter) deployment in SD-WAN Applications ↗
Saturday' 13-Mar-2021
Software-Defined Wide Area Networking (SD-WAN) is a new innovative way to provide optimal application performance by redefining branch office networking. Unlike traditional expensive private WAN connection technologies such as MPLS, etc., SD-WAN delivers increased network performance and cost reduction. SD-WAN solution decouple network software services from the underlying hardware via software abstraction.

Bufferbloat in a Networking Device or an Appliance ↗
Saturday' 13-Mar-2021

My sample Wireshark packet capture files for research ↗
Saturday' 13-Mar-2021
I have a huge repository (or collection) of sample Wireshark packet capture files for reference. I use them extensively for research and development of TOFFEE as well to understand various protocol PDUs and protocol standards. I personally collected various test captures via Wireshark during my test and experimental research setup during the course of TOFFEE development. Say if you are a student and learning Networking and or say VoIP data and VoIP packets, you can analyse my VoIP sample Wireshark captures. Or in other case assume you are doing some quick research (or development) and want to refer few handful of VoIP packets then you can download and analyse my sample packet capture files.

TOFFEE (and TOFFEE-DataCenter) deployment with web-proxy cache ↗
Saturday' 13-Mar-2021
If you want to deploy TOFFEE along with a web-proxy cache (such as Squid Proxy) you can deploy the same as shown below. TOFFEE does not cache files. TOFFEE does packet level network optimization. So if you want caching your web content you can use transparent mode web-proxy cache intercepting your WAN links. A web-proxy may reduce amount of data being processed (optimized) within these TOFFEE devices and so reduce the CPU overheads and improve its performance.




TOFFEE-Mocha - WAN Emulator :: TOFFEE-MOCHA-2.0.3-0-10-nov-2018-x86-64.iso ↗
Saturday' 13-Mar-2021
Download TOFFEE-MOCHA-2.0.3-0-10-nov-2018-x86-64.iso via Google Drive share: Live bootable x86-64 Debian Stretch 9.5 with light-weight LXDE UI ISO (includes source-code): TOFFEE-MOCHA-2.0.3-0-10-nov-2018-x86-64.iso You can find the source tar-ball in the /root folder. To know more about the project kindly refer TOFFEE- Mocha: News and Updates - Documentation. To know more about current specific release, objectives, features, release notes/updates, quick demo and future road-map, you can watch my video below.



Research :: Optimization of network data (WAN Optimization) at various levels:
Network File level network data WAN Optimization


Learn Linux Systems Software and Kernel Programming:
Linux, Kernel, Networking and Systems-Software online classes [CDN]


Hardware Compression and Decompression Accelerator Cards:
TOFFEE Architecture with Compression and Decompression Accelerator Card


TOFFEE-DataCenter on a Dell Server - Intel Xeon E5645 CPU:
TOFFEE-DataCenter screenshots on a Dual CPU - Intel(R) Xeon(R) CPU E5645 @ 2.40GHz - Dell Server