El proyecto TOFFEE
CASADOCUMENTACIÓNACTUALIZACIONESVIDEOSINVESTIGACIÓNDESCARGARPATROCINADORESCONTACTO


RESEARCH 》 Power consumption of my Home Lab devices for research

AMD RYZEN 3 1200 - FreeNAS Storage array build
  • CPU: AMD Ryzen 3 1200 (4 cores/4 threads)
  • RAM: Corsair Vengeance 8GB DDR4 LPX 2400MHz C16 Kit
  • Motherboard: Gigabyte GA-A320M-HD2 AM44
  • Graphics/Display: Asus Geforce 210GT 1GB DDR3
  • PSU: Circle CPH698V12-400
  • Storage: WDC WD10JPVX-75JC3T0 - WD 1TB HDD
System BIOS53 watts
Idle System (Linux Ubuntu OS)52 watts
Casual browsing53 watts
Youtube video playback60 watts
Kernel compilation with 4-threads "make -j4" (99% load)74 watts
Kernel compilation with 3-threads "make -j3" (80% load)71 watts

My Intel Core i7-5820K - Desktop build
  • CPU: Intel Core i7-5820K (6 cores/12 threads)
  • RAM: Corsair PC2800 DDR4 14GB Kit
  • Motherboard: Gigabyte X99-UD4
  • Graphics/Display: Asus Geforce 210GT 1GB DDR3
  • PSU: Corsair VS450
  • CPU Liquid Cooling system: Cooler Master Nepton 240m
  • Storage: Transcend TS128GSSD370 128GB SSD
Idle System (Linux Ubuntu OS)70 watts
System BIOS90 watts
Linux kernel compilation (80%) load150 watts

My Intel Celeron CPU 1037U Mini PC WAN Optimization Device
  • CPU: Intel Celeron CPU 1037U
  • RAM: DDR3 PC3L 4GB
  • Storage: Transcend TS128GSSD370 128GB SSD
Idle System (Linux Ubuntu OS)18-20 watts
System BIOS16.5 watts
Linux kernel compilation (95%) load21-24 watts

My HP Envy 15-J111TX Laptop
  • CPU: Intel Corei7-4700MQ
  • RAM: DDR3 PC3L 12GB
  • Storage: WD Blue 250GB Scorpio HDD
Idle System (Linux Ubuntu OS) charging44 watts
Idle System (Linux Ubuntu OS) charged15 watts
Poweroff charging28 watts
Poweroff charged0.1 watts
Poweron charged suspend0.75 watts
Linux kernel compilation (95%) load charging90 watts
Linux kernel compilation (95%) load charged69 watts

My Dell 15R 5537 Laptop
  • CPU: Intel Corei7-4500U
  • RAM: DDR3 PC3L 8GB
  • Storage: Seagate 320GB Momentus HDD
Idle System (Linux Ubuntu OS) charging42 watts
Idle System (Linux Ubuntu OS) charged10 watts
Poweroff charging29 watts
Poweroff charged0.1 watts
Poweron charged suspend0.70 watts
Linux kernel compilation (95%) load charging60 watts
Linux kernel compilation (95%) load charged30 watts

My Acer Aspire 4810T Laptop
  • CPU: Intel Core Solo SU3500 1.4 GHz
  • RAM: DDR3 PC3 4GB
  • Storage: WD Blue 250GB Scorpio HDD
  * No Battery, so no charging.
Idle System (Linux Manjaro OS)16.23 watts
System BIOS24.30 watts
Casual Browsing22.27 watts
Youtube Playback22.45 watts

Raspberry Pi2 Device
  • Powered via 2Amp USB power-supply
  • Raspbian OS
  • USB mouse and USB keyboard connected
Casual browsing2.6 - 3 watts
Youtube video playback (25% load)3 - 3.5 watts
Kernel compilation with 4-threads "make -j4" (99% load)3.9 - 4 watts
Kernel compilation with 3-threads "make -j3"3.67 - 3.75 watts
idle device with no keyboard and no mouse2.08 - 2.1 watts

NETGEAR RN104 ReadyNAS
  • 2x 2.5'' Laptop HDD drives
  • 2x 3.5'' Desktop HDD drives
  • Single x-RAID volume with 4 HDD drives
Device off but plugged-in0.58 watts
Idle device after booting28 watts
File copy (write operation)28.7 watts
RAID Volume scrub operation29.5 watts

APC BX600C-IN UPS - APC Back-UPS 600(UPS not powered-on but connected to live power socket)
Standby Charging13.5 watts
Standby not-Charging7.8 watts

APC BX600CI-IN UPS - APC Back-UPS 600(UPS not powered-on but connected to live power socket)
Standby Charging9.5 watts
Standby not-Charging10-0.9 watts

BenQ LED Monitor 24'' GW2470HM
off plugged-in0.00 watts
Dim11.7 watts

LG LCD TV Monitor 23'' M237WA-PT
off plugged-in0.8 watts
Dim33 watts
Bright45 watts

Samsung LCD Monitor 22'' 2243NWX
off plugged-in0.7 watts
Dim20 watts
Bright33.5 watts

Power consumption of my Home Lab devices for research

Here is my power-consumption measurements of various devices deployed within my home lab. I measured via my kill-a-watt sort of power-meter which is fairly reliable and accurate. I checked its accuracy with various standard load such as Philips LED laps and other constant power-consuming devices to make sure that the power-meter is precise.

So far I maintained this data in my personal Google drive spreadsheet documents. But now I thought perhaps its good to share these numbers so that it is useful for various users to access their equipment such as:

  • decide UPS and battery backup ratings
  • off-grid solar power installations
  • choose new upgraded hardware which consumes less power and deliver better performance such as SSD over traditional HDD, new CPU, new Monitor, new laptop, servers, desktops and so on. And discard obsolete old hardware.
  • choosing the right PSU (power supply unit) for your desktop PC build

Before posting this article I shot a VLOG regarding the same and posted in my Youtube channel The Linux Channel. You can kindly watch the same:

Explore my lab's historical month wise power-usage trends: I started logging my entire lab monthly power-consumption readings. You can read the article HERE.

Off-Grid Solar Power System for Raspberry Pi: When you choose to use your Raspberry Pi device as your IoT based remote weather station or if you are building Linux kernel (like kernel compilation) within the same, you need a good uninterrupted power source (UPS). But if you are using it on site or in some research camping location you can choose to power your Raspberry Pi device with your custom off-grid solar power source. Kindly read my complete article about the same HERE.
Off-Grid Solar Power System for Raspberry Pi



Suggested Topics:


Generic Home Lab Research

💎 TOFFEE-MOCHA new bootable ISO: Download
💎 TOFFEE Data-Center Big picture and Overview: Download PDF


Temas recomendados:

The TOFFEE Project :: TOFFEE :: WAN Optimization ↗
Saturday' 13-Mar-2021
TOFFEE is an open-source WAN Optimization (Network Performance Optimization) software which can be used to optimize your critical networks.

TOFFEE with Hardware Compression and Decompression Accelerator Cards ↗
Saturday' 13-Mar-2021
You can build a basic TOFFEE WAN Optimization hardware completely in software layer (i.e its networking data-plane and control-plane). And if you are a product manufacturer you can make commercial WAN Optimization products with TOFFEE with software layer alone. And if you choose to improve its performance, you can use any third-party PCIe Compression Accelerator cards.

TOFFEE-Mocha Documentation :: TOFFEE-Mocha - Jitter feature ↗
Saturday' 13-Mar-2021

Tracking Live Network Application Data - in a WAN Acceleration (WAN Optimization) Device ↗
Saturday' 13-Mar-2021

TOFFEE Download :: TOFFEE-1.1.70-1-portable ↗
Saturday' 13-Mar-2021

Building my own CDN - Minify Script files - Update: 23-July-2016 ↗
Saturday' 13-Mar-2021
One of the suggestions Google PageSpeed Insights tool suggested for The TOFFEE Project website is to minify the css and java script files. Minify Script files: When you read online about minification of your web script files, often they highlight file size savings and thus resulting faster download time and better website performance.



Demo TOFFEE-DataCenter WAN Optimization packaging feature ↗
Saturday' 13-Mar-2021

TOFFEE-DataCenter WAN Optimization software development - Update: 13-Aug-2016 ↗
Saturday' 13-Mar-2021
Earlier the TOFFEE is intended to work on IoT devices, Satellite Networks, branch office/SOHO deployments. In most cases the users may deploy just one or couple of TOFFEE devices per site. But in the case of TOFFEE-DataCenter, users can scale-up deploying the same in multiple servers in a sort of distributed cluster computing scenario. Besides the core TOFFEE-DataCenter components (such as packet processing engine/framework), I need to do lot of changes in its Graphical User Interface (GUI) too to address these new requirements.

First TOFFEE-Butterscotch Code Release ↗
Saturday' 13-Mar-2021
TOFFEE-Butterscotch is a variant of TOFFEE can be used to save and optimize your Home/SOHO Internet/WAN bandwidth. Unlike TOFFEE (and TOFFEE-DataCenter) TOFFEE-Butterscotch is a non peer-to-peer (and asymmetric) network optimization solution. This makes TOFFEE-Butterscotch an ideal tool for all Home and SOHO users.

Internet optimization through TOFFEE-DataCenter WAN Optimization Demo ↗
Saturday' 13-Mar-2021



Featured Educational Video:
Watch on Youtube - [89//1] B.E and M.E Final Year Projects - Form your Team ↗

Network Packet Queue or Buffer - Packet Flow Control, Fragmentation and MTU ↗
Saturday' 13-Mar-2021
Network Packet Queue or Buffer - Packet Flow Control, Fragmentation and MTU

First TOFFEE Code Release ↗
Saturday' 13-Mar-2021
I started working on the new TOFFEE project (which is the fork of my earlier TrafficSqueezer open-source project) starting from 1st January 2016 onwards. Ever since I was busy in research and altering certain old features so that it is more minimal than TrafficSqueezer, a more focused agenda, deliver refined code and a broader vision. I have lined up more things to follow in the upcoming months. I want to focus about all aspects of WAN communication technologies not just on core WAN Optimization research and technology.

Upgrading Ubuntu 17.10 to 18.04 via TOFFEE-DataCenter WAN Optimization Screenshots ↗
Saturday' 13-Mar-2021

TrueBench - Linux CPU Benchmarking system ↗
Saturday' 13-Mar-2021
TrueBench is an unique open-source benchmarking system in which the core system performance and efficiency parameters are measured at extreme high resolution in the order of several million/billion µ-seconds for a given specific task. TrueBench is a part of The TOFFEE Project research.




Internet optimization through TOFFEE-DataCenter WAN Optimization Demo ↗
Saturday' 13-Mar-2021
Internet optimization through TOFFEE-DataCenter WAN Optimization Demo



Research :: Optimization of network data (WAN Optimization) at various levels:
Network File level network data WAN Optimization


Learn Linux Systems Software and Kernel Programming:
Linux, Kernel, Networking and Systems-Software online classes


Hardware Compression and Decompression Accelerator Cards:
TOFFEE Architecture with Compression and Decompression Accelerator Card


TOFFEE-DataCenter on a Dell Server - Intel Xeon E5645 CPU:
TOFFEE-DataCenter screenshots on a Dual CPU - Intel(R) Xeon(R) CPU E5645 @ 2.40GHz - Dell Server