The TOFFEE Project
HOMEDOCUMENTATIONUPDATESVIDEOSRESEARCHDOWNLOADSPONSORSCONTACT


DOCUMENTATION 》 TOFFEE with Hardware Compression and Decompression Accelerator Cards

You can build a basic TOFFEE WAN Optimization hardware completely in software layer (i.e its networking data-plane and control-plane). And if you are a product manufacturer you can make commercial WAN Optimization products with TOFFEE with software layer alone. And if you choose to improve its performance, you can use any third-party PCIe Compression Accelerator cards.

Here is the TOFFEE system architecture with and without hardware accelerator card (i.e Hardware offload). Hardware offload will greatly reduce the load on general purpose CPU (which is your software/OS layer) and the core data optimization operation such as loss-less compression (sometimes even encryption) is done within a dedicated Hardware Accelerator card (or chip) as shown below.
TOFFEE Architecture with Compression and Decompression Accelerator Card

In this case TOFFEE will work as an WAN Optimization framework. With this framework you can architect your entire commercial WAN Optimization product series. You need to modify TOFFEE Linux kernel modules (and APIs) so that it no longer choose kernel's LZ77, LZO or LZ4 software compression libraries (which is CPU bound), instead point to the hardware accelerator card vendor provided kernel's driver/library APIs. This makes packet data compression within TOFFEE Linux Kernel module CPU bound to dedicated co-processor hardware compression accelerator card bound.

It is a well known fact that Linux Kernel's Kernel modules are not great at scaling with multiple CPU Processor Cores. So in a systems architecture point of having more CPU cores in a TOFFEE WAN Optimization device gives no significant advantage. The per-core CPU performance is what required for a workload like TOFFEE packet data optimization. So if architect a high-end WAN Optimization device you need to consider hardware acceleration offload if feasible.

For example: Here is a general purpose AHA AHA363PCIE0301G 5Gbs GZIP Compression/Decompression Accelerator Card. Typical applications (or use-cases) of this card could be Storage Arrays, Load Balancers, WAN Optimization, Web Servers, Data Analytics, etc.
Comtech AHA AHA363PCIE0301G 5Gbs GZIP Compression/Decompression Accelerator Card
Image courtesy/link: https://images-na.ssl-images-amazon.com/images/I/61kMl1v4BmL._SL1500_.jpg



Intel FPGA PAC D5005 High-end Drop-in Accelerator: Here is yet another but general purpose FPGA Accelerator card can be used for processing high-bandwidth Network and Storage Data Processing (hardware offload). Read the complete article here.
Intel FPGA PAC D5005 On HPE ProLiant DL380 Gen10
Image courtesy/link: https://www.servethehome.com/wp-content/uploads/2019/08/Intel-FPGA-PAC-D5005-on-HPE-ProLiant-DL380-Gen10.jpg
Intel FPGA PAC D5005
Image courtesy/link: https://www.servethehome.com/wp-content/uploads/2019/08/Intel-FPGA-PAC-D5005-Diagram.jpg


References:



Suggested Topics:


TOFFEE - WAN Optimization


Categories

💎 TOFFEE-MOCHA new bootable ISO: Download
💎 TOFFEE Data-Center Big picture and Overview: Download PDF


Recommended Topics:

TOFFEE-Mocha Documentation :: TOFFEE-Mocha - Jitter feature ↗
Saturday' 13-Mar-2021

A study on Deep Space Networks (DSN) ↗
Saturday' 13-Mar-2021
When you are dealing Deep Space Networks (DSN) one among the most challenging parts is the Interplanetary distances and communicating data across such vast distances. This is where we are not dealing with common Internet type traffic such as HTTP/FTP/VoIP/etc but it is completely different when it comes to DSN so far. So optimizing data in DSN becomes mandatory. For example if you think one of the Mars Rovers, they have used LZO lossless compression.

Amazon Prime video - Video Acceleration No more Buffering Problems - WAN Acceleration ↗
Saturday' 13-Mar-2021

Advantages of CDN - Content Delivery Networks or Content Distribution Networks ↗
Saturday' 13-Mar-2021

TOFFEE-DataCenter :: Optimized ISP backbone networks for countries with slowest Internet Speed ↗
Saturday' 13-Mar-2021

Multi-dimensional (Multi-universe) Internet Technology - A Proposal ↗
Saturday' 13-Mar-2021
Currently what we have is a single homogeneous (sort of) WWW Internet. Which we can consider as a single-dimensional network. What I propose is that we can create complete independent multiple Internets with each Internet having its own IP-address space, Domain namespace and an authority to manage Domain names. And these networks/Internets can be entirely IPv4 only based or IPv6 only based.



The TOFFEE Project :: TOFFEE-Mocha :: WAN Emulator ↗
Saturday' 13-Mar-2021
The TOFFEE Project :: TOFFEE-Mocha :: Linux Open-Source WAN Emulator

TOFFEE-DataCenter screenshots on a Dual CPU - Intel(R) Xeon(R) CPU E5645 @ 2.40GHz - Dell Server ↗
Saturday' 13-Mar-2021

Multi-dimensional (Multi-universe) Internet Technology - A Proposal ↗
Saturday' 13-Mar-2021
Currently what we have is a single homogeneous (sort of) WWW Internet. Which we can consider as a single-dimensional network. What I propose is that we can create complete independent multiple Internets with each Internet having its own IP-address space, Domain namespace and an authority to manage Domain names. And these networks/Internets can be entirely IPv4 only based or IPv6 only based.

My Lab HDD and SSD logs for research ↗
Saturday' 13-Mar-2021



Featured Educational Video:
Watch on Youtube - [17445//1] 294 - VRF - Virtual Routing and Forwarding - Introduction ↗

Internet optimization through TOFFEE-DataCenter WAN Optimization Demo ↗
Saturday' 13-Mar-2021
Internet optimization through TOFFEE-DataCenter WAN Optimization Demo

Introducing TOFFEE-DataCenter ↗
Saturday' 13-Mar-2021
TOFFEE TOFFEE Data-Center is specifically meant for Data Center, Cluster Computing, HPC applications. TOFFEE is built in Linux Kernel core. This makes it inflexible to adapt according to the hardware configuration. It does sequential packet processing and does not scale up well in large multi-core CPU based systems (such as Intel Xeon servers, Core i7 Extreme Desktop systems,etc). Apart from this since it is kernel based, if there is an issue in kernel, it may crash entire system. This becomes a challenge for any carrier grade equipment (CGE) hardware build.

TOFFEE-Butterscotch a TOFFEE for Home/SOHO Internet/WAN bandwidth ↗
Saturday' 13-Mar-2021
TOFFEE-Butterscotch a TOFFEE for Home/SOHO Internet/WAN bandwidth

TOFFEE-Mocha - WAN Emulator :: TOFFEE-MOCHA-2.0.3-0-10-nov-2018-x86-64.iso ↗
Saturday' 13-Mar-2021
Download TOFFEE-MOCHA-2.0.3-0-10-nov-2018-x86-64.iso via Google Drive share: Live bootable x86-64 Debian Stretch 9.5 with light-weight LXDE UI ISO (includes source-code): TOFFEE-MOCHA-2.0.3-0-10-nov-2018-x86-64.iso You can find the source tar-ball in the /root folder. To know more about the project kindly refer TOFFEE- Mocha: News and Updates - Documentation. To know more about current specific release, objectives, features, release notes/updates, quick demo and future road-map, you can watch my video below.




First TOFFEE-Butterscotch Code Release ↗
Saturday' 13-Mar-2021
TOFFEE-Butterscotch is a variant of TOFFEE can be used to save and optimize your Home/SOHO Internet/WAN bandwidth. Unlike TOFFEE (and TOFFEE-DataCenter) TOFFEE-Butterscotch is a non peer-to-peer (and asymmetric) network optimization solution. This makes TOFFEE-Butterscotch an ideal tool for all Home and SOHO users.



Research :: Optimization of network data (WAN Optimization) at various levels:
Network File level network data WAN Optimization


Learn Linux Systems Software and Kernel Programming:
Linux, Kernel, Networking and Systems-Software online classes


Hardware Compression and Decompression Accelerator Cards:
TOFFEE Architecture with Compression and Decompression Accelerator Card


TOFFEE-DataCenter on a Dell Server - Intel Xeon E5645 CPU:
TOFFEE-DataCenter screenshots on a Dual CPU - Intel(R) Xeon(R) CPU E5645 @ 2.40GHz - Dell Server