The TOFFEE Project
HOMEDOCUMENTATIONUPDATESVIDEOSRESEARCHDOWNLOADSPONSORSCONTACT


DOCUMENTATION 》 TEST CASES :: TEST RESULTS :: TOFFEE-Mocha-1.0.14 Development version

Here are the TOFFEE-Mocha test cases and test results of the upcoming new TOFFEE-Mocha which is still under development. The features of this TOFFEE-Mocha are discussed in the software development update: TOFFEE-Mocha WAN Emulation software development - Update: 1-July-2016

Test case1 :: 999 millisecond constant packet delay: As you can see unlike 40 milliseconds the maximum limit which existed earlier, the new 999 milliseconds delay range allows users to slow down the transfer rates even further.

kiran@HP-ENVY-15:~/temp$ ping 192.168.0.1 -s 1000
PING 192.168.0.1 (192.168.0.1) 1000(1028) bytes of data.
1008 bytes from 192.168.0.1: icmp_seq=1 ttl=64 time=2000 ms
1008 bytes from 192.168.0.1: icmp_seq=2 ttl=64 time=2000 ms
1008 bytes from 192.168.0.1: icmp_seq=3 ttl=64 time=2000 ms
1008 bytes from 192.168.0.1: icmp_seq=4 ttl=64 time=2000 ms
1008 bytes from 192.168.0.1: icmp_seq=5 ttl=64 time=2998 ms
1008 bytes from 192.168.0.1: icmp_seq=6 ttl=64 time=2997 ms
1008 bytes from 192.168.0.1: icmp_seq=7 ttl=64 time=3995 ms
1008 bytes from 192.168.0.1: icmp_seq=8 ttl=64 time=3985 ms
1008 bytes from 192.168.0.1: icmp_seq=9 ttl=64 time=3984 ms
1008 bytes from 192.168.0.1: icmp_seq=10 ttl=64 time=3984 ms
1008 bytes from 192.168.0.1: icmp_seq=11 ttl=64 time=3983 ms
1008 bytes from 192.168.0.1: icmp_seq=12 ttl=64 time=3982 ms
1008 bytes from 192.168.0.1: icmp_seq=13 ttl=64 time=3984 ms
1008 bytes from 192.168.0.1: icmp_seq=14 ttl=64 time=3982 ms
^C
--- 192.168.0.1 ping statistics ---
18 packets transmitted, 14 received, 22% packet loss, time 17007ms
rtt min/avg/max/mdev = 2000.042/3277.214/3995.537/873.965 ms, pipe 4
kiran@HP-ENVY-15:~/temp$

Test case2 :: 500 millisecond constant packet delay: With 500 milliseconds you get roughly double the performance of 999 milliseconds.

kiran@HP-ENVY-15:~/temp$ ping 192.168.0.1 -s 1000
PING 192.168.0.1 (192.168.0.1) 1000(1028) bytes of data.
1008 bytes from 192.168.0.1: icmp_seq=1 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=2 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=3 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=4 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=5 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=6 ttl=64 time=1488 ms
1008 bytes from 192.168.0.1: icmp_seq=7 ttl=64 time=1481 ms
1008 bytes from 192.168.0.1: icmp_seq=8 ttl=64 time=1481 ms
1008 bytes from 192.168.0.1: icmp_seq=9 ttl=64 time=1008 ms
1008 bytes from 192.168.0.1: icmp_seq=10 ttl=64 time=1002 ms
^C
--- 192.168.0.1 ping statistics ---
11 packets transmitted, 10 received, 9% packet loss, time 10017ms
rtt min/avg/max/mdev = 1002.077/1147.151/1488.063/220.133 ms, pipe 2
kiran@HP-ENVY-15:~/temp$

Test case3 :: 500 millisecond constant packet delay + random packet delay: With constant delay (in this case 500 milliseconds) if you enable the new random packet delay feature, it will skip delay randomly few packets. Which can be controlled via random delay factor. In this case the random delay factor value is set to 1. And you can see below few packets are not delayed. Hence their ping response time almost reduced to half (i.e around 500 ms).

kiran@HP-ENVY-15:~/temp$ ping 192.168.0.1 -s 1000
PING 192.168.0.1 (192.168.0.1) 1000(1028) bytes of data.
1008 bytes from 192.168.0.1: icmp_seq=1 ttl=64 time=1503 ms
1008 bytes from 192.168.0.1: icmp_seq=2 ttl=64 time=1497 ms
1008 bytes from 192.168.0.1: icmp_seq=3 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=4 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=5 ttl=64 time=1001 ms
1008 bytes from 192.168.0.1: icmp_seq=6 ttl=64 time=1001 ms
1008 bytes from 192.168.0.1: icmp_seq=7 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=8 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=9 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=10 ttl=64 time=419 ms
1008 bytes from 192.168.0.1: icmp_seq=11 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=12 ttl=64 time=1001 ms
1008 bytes from 192.168.0.1: icmp_seq=13 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=14 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=15 ttl=64 time=1001 ms
1008 bytes from 192.168.0.1: icmp_seq=16 ttl=64 time=502 ms
1008 bytes from 192.168.0.1: icmp_seq=17 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=18 ttl=64 time=502 ms
1008 bytes from 192.168.0.1: icmp_seq=19 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=20 ttl=64 time=1001 ms
1008 bytes from 192.168.0.1: icmp_seq=21 ttl=64 time=1002 ms
^C
--- 192.168.0.1 ping statistics ---
22 packets transmitted, 21 received, 4% packet loss, time 21029ms
rtt min/avg/max/mdev = 419.093/974.135/1503.026/250.662 ms, pipe 2
kiran@HP-ENVY-15:~/temp$

Random Packet delay: As discussed in my VLOG/update earlier, the idea of Random packet delay is to introduce the fluctuating, bursty nature of packet flow. So here are various tests done which shows the same in action. These tests below are performed while downloading a large file by enabling random packet delay along with various values of constant packet delay.

Test case4 :: 2 millisecond constant packet delay + random packet delay: With constant delay of 2 millisecond and random packet delay you can notice the blue curve which almost appears constant. The traffic in this case is bursty but it is not that significant to notice in the graph shown below.
TOFFEE_Mocha_2ms_delay_with_random_packet_delay

Test case5 :: 10 millisecond constant packet delay + random packet delay: With constant delay of 10 millisecond and random packet delay you can notice the blue curve which almost appears constant. The traffic in this case is bursty but it is not that significant to notice in the graph shown below. But it appears somewhat fluctuating than the 5 millisecond test case4 above.
TOFFEE_Mocha_10ms_delay_with_random_packet_delay

Test case6 :: 200 millisecond constant packet delay + random packet delay: With constant delay of 200 millisecond and random packet delay you can notice the fluctuating blue curve. With this we can understand the true purpose of random packet delay.
TOFFEE_Mocha_200ms_delay_with_random_packet_delay

Test case7 :: 200 millisecond constant packet delay + WITHOUT random packet delay: With constant delay of 200 millisecond and WITHOUT random packet delay feature enabled you can notice the steady blue curve. This is a direct comparison of a test case with constant packet delay 200 millisecond with and without random packet delay. With random packet delay it makes the network performance choppy, fluctuating and bursty, but without random packet delay feature the network performance appears almost constant.
TOFFEE_Mocha_200ms_delay_without_random_packet_delay

So in my next upcoming TOFFEE-Mocha release I may include all these new features and updated old features. If you are in need of any specific feature (or scenario) you can kindly let know. If plausible and feasible I can support the same and release as a part of my upcoming TOFFEE-Mocha release. Kindly stay tuned !



Suggested Topics:


TOFFEE-Mocha - WAN Emulator


Categories

💎 TOFFEE-MOCHA new bootable ISO: Download
💎 TOFFEE Data-Center Big picture and Overview: Download PDF


Recommended Topics:

How to check a website using CDN ? ↗
Saturday' 13-Mar-2021

Network Latency in WAN Networks and performance optimization ↗
Saturday' 13-Mar-2021
Here is my video article on Network Latency in WAN Networks (such as long distance Satellite links, etc) and how you can optimize the same to achieve better network performance.

First TOFFEE-Butterscotch Code Release ↗
Saturday' 13-Mar-2021
TOFFEE-Butterscotch is a variant of TOFFEE can be used to save and optimize your Home/SOHO Internet/WAN bandwidth. Unlike TOFFEE (and TOFFEE-DataCenter) TOFFEE-Butterscotch is a non peer-to-peer (and asymmetric) network optimization solution. This makes TOFFEE-Butterscotch an ideal tool for all Home and SOHO users.

TOFFEE deployment topology guide ↗
Saturday' 13-Mar-2021
Assume you have two sites (such as Site-A and Site-B) connected via slow/critical WAN link as shown below. You can optimize this link by saving the bandwidth as well possibly improve the speed. However, the WAN speed can be optimized only if the WAN link speeds are below that of the processing latency of your TOFFEE installed hardware. Assume your WAN link is 12Mbps, and assume the maximum WAN optimization speed/capacity of Raspberry Pi is 20Mbps, then your link will get speed optimization too. And in another case, assume your WAN link is 50Mbps, then using the Raspberry Pi as WAN Optimization device will actually increase the latency (i.e slows the WAN link). But in all the cases the bandwidth savings should be the same irrespective of the WAN link speed. In other words, if you want to cut down the WAN link costs via this WAN Optimization set up, you can always get it since it reduces the overall bandwidth in almost all the cases (including encrypted and pre-compressed data).

TOFFEE (and TOFFEE-DataCenter) deployment in SD-WAN Applications ↗
Saturday' 13-Mar-2021
Software-Defined Wide Area Networking (SD-WAN) is a new innovative way to provide optimal application performance by redefining branch office networking. Unlike traditional expensive private WAN connection technologies such as MPLS, etc., SD-WAN delivers increased network performance and cost reduction. SD-WAN solution decouple network software services from the underlying hardware via software abstraction.

Building my own CDN - Moving away from Joomla to non-Joomla website - Update: 01-Oct-2016 ↗
Saturday' 13-Mar-2021
Seems there are couple of Inmotionhosting servers are down. And one of the server includes The TOFFEE Project website hosted server. I was in touch with the Inmotionhosting team trying to resolve the same. I found a unique issue that all my website files are intact and the Joomla database. But the Joomla database tables are completely wiped out and missing. Besides there is also a sort of upgrade going on in their servers. Luckily I have the most recent backup of the entire website.



TOFFEE-Mocha Documentation :: TOFFEE-Mocha-1.0.32-1-x86_64 and TOFFEE-Mocha-1.0.32-1-i386 ↗
Saturday' 13-Mar-2021

TOFFEE-DataCenter - First Live Demo and software development - Update: 26-Aug-2016 ↗
Saturday' 13-Mar-2021
Today I have done a test setup so that I can able to connect my Android Samsung Tab via TOFFEE DataCenter. Below is my complete test topology of my setup. For demo (and research/development) context I configured TOFFEE DataCenter in engineering debug mode. So I do not need two devices for this purpose.

TrueBench - Linux CPU Benchmarking system ↗
Saturday' 13-Mar-2021
TrueBench is an unique open-source benchmarking system in which the core system performance and efficiency parameters are measured at extreme high resolution in the order of several million/billion µ-seconds for a given specific task. TrueBench is a part of The TOFFEE Project research.

Introducing TrueBench - a high resolution CPU benchmarking system ↗
Saturday' 13-Mar-2021
TrueBench is an unique open-source benchmarking system in which the core system performance and efficiency parameters are measured at extreme high resolution in the order of several million/billion µ-seconds for a given specific task. TrueBench is a part of The TOFFEE Project research. With TrueBench Raspberry Pi 3, Raspberry Pi 2B, Raspberry Pi 2 and other embedded SoC devices are benchmarked and you can do a comparative analysis with standard mainstream x86 devices.



Featured Educational Video:
Watch on Youtube - [171//1] 169 Q&A - Add additional HardDrive or storage space in Linux VirtualBox VM ↗

Introducing TOFFEE-DataCenter ↗
Saturday' 13-Mar-2021
TOFFEE TOFFEE Data-Center is specifically meant for Data Center, Cluster Computing, HPC applications. TOFFEE is built in Linux Kernel core. This makes it inflexible to adapt according to the hardware configuration. It does sequential packet processing and does not scale up well in large multi-core CPU based systems (such as Intel Xeon servers, Core i7 Extreme Desktop systems,etc). Apart from this since it is kernel based, if there is an issue in kernel, it may crash entire system. This becomes a challenge for any carrier grade equipment (CGE) hardware build.

TOFFEE-Mocha WAN Emulation software development - Update: 17-June-2016 ↗
Saturday' 13-Mar-2021
Now I supported and finished complete GUI support of these parameters so that you can configure, store, reboot and the same will restore upon reboot. Besides I complete the TOFFEE-Mocha Big-Picture page. The Big picture is an interface where you can find all the configuration (or settings) of the TOFFEE-Mocha. This is almost similar to CISCO device show all command but in graphical representation. Sometimes a network admin can also print the Big Picture page and paste it near to the device to refer its settings.

YouTube Video Network Traffic Optimization - WAN Optimization Demo ↗
Saturday' 13-Mar-2021

TOFFEE-DataCenter - First Live Demo and software development - Update: 26-Aug-2016 ↗
Saturday' 13-Mar-2021
Today I have done a test setup so that I can able to connect my Android Samsung Tab via TOFFEE DataCenter. Below is my complete test topology of my setup. For demo (and research/development) context I configured TOFFEE DataCenter in engineering debug mode. So I do not need two devices for this purpose.




TOFFEE-DataCenter Download :: TOFFEE-DATACENTER-1.2.2-1-portable ↗
Saturday' 13-Mar-2021



Research :: Optimization of network data (WAN Optimization) at various levels:
Network File level network data WAN Optimization


Learn Linux Systems Software and Kernel Programming:
Linux, Kernel, Networking and Systems-Software online classes


Hardware Compression and Decompression Accelerator Cards:
TOFFEE Architecture with Compression and Decompression Accelerator Card


TOFFEE-DataCenter on a Dell Server - Intel Xeon E5645 CPU:
TOFFEE-DataCenter screenshots on a Dual CPU - Intel(R) Xeon(R) CPU E5645 @ 2.40GHz - Dell Server