Проект TOFFEE
ГЛАВНАЯДОКУМЕНТАЦИЯОБНОВЛЕНИЕВИДЕОИССЛЕДОВАНИЕСКАЧАТЬСПОНСОРЫконтакт


DOCUMENTATION 》 TEST CASES :: TEST RESULTS :: TOFFEE-Mocha-1.0.14 Development version

Here are the TOFFEE-Mocha test cases and test results of the upcoming new TOFFEE-Mocha which is still under development. The features of this TOFFEE-Mocha are discussed in the software development update: TOFFEE-Mocha WAN Emulation software development - Update: 1-July-2016

Test case1 :: 999 millisecond constant packet delay: As you can see unlike 40 milliseconds the maximum limit which existed earlier, the new 999 milliseconds delay range allows users to slow down the transfer rates even further.

kiran@HP-ENVY-15:~/temp$ ping 192.168.0.1 -s 1000
PING 192.168.0.1 (192.168.0.1) 1000(1028) bytes of data.
1008 bytes from 192.168.0.1: icmp_seq=1 ttl=64 time=2000 ms
1008 bytes from 192.168.0.1: icmp_seq=2 ttl=64 time=2000 ms
1008 bytes from 192.168.0.1: icmp_seq=3 ttl=64 time=2000 ms
1008 bytes from 192.168.0.1: icmp_seq=4 ttl=64 time=2000 ms
1008 bytes from 192.168.0.1: icmp_seq=5 ttl=64 time=2998 ms
1008 bytes from 192.168.0.1: icmp_seq=6 ttl=64 time=2997 ms
1008 bytes from 192.168.0.1: icmp_seq=7 ttl=64 time=3995 ms
1008 bytes from 192.168.0.1: icmp_seq=8 ttl=64 time=3985 ms
1008 bytes from 192.168.0.1: icmp_seq=9 ttl=64 time=3984 ms
1008 bytes from 192.168.0.1: icmp_seq=10 ttl=64 time=3984 ms
1008 bytes from 192.168.0.1: icmp_seq=11 ttl=64 time=3983 ms
1008 bytes from 192.168.0.1: icmp_seq=12 ttl=64 time=3982 ms
1008 bytes from 192.168.0.1: icmp_seq=13 ttl=64 time=3984 ms
1008 bytes from 192.168.0.1: icmp_seq=14 ttl=64 time=3982 ms
^C
--- 192.168.0.1 ping statistics ---
18 packets transmitted, 14 received, 22% packet loss, time 17007ms
rtt min/avg/max/mdev = 2000.042/3277.214/3995.537/873.965 ms, pipe 4
kiran@HP-ENVY-15:~/temp$

Test case2 :: 500 millisecond constant packet delay: With 500 milliseconds you get roughly double the performance of 999 milliseconds.

kiran@HP-ENVY-15:~/temp$ ping 192.168.0.1 -s 1000
PING 192.168.0.1 (192.168.0.1) 1000(1028) bytes of data.
1008 bytes from 192.168.0.1: icmp_seq=1 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=2 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=3 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=4 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=5 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=6 ttl=64 time=1488 ms
1008 bytes from 192.168.0.1: icmp_seq=7 ttl=64 time=1481 ms
1008 bytes from 192.168.0.1: icmp_seq=8 ttl=64 time=1481 ms
1008 bytes from 192.168.0.1: icmp_seq=9 ttl=64 time=1008 ms
1008 bytes from 192.168.0.1: icmp_seq=10 ttl=64 time=1002 ms
^C
--- 192.168.0.1 ping statistics ---
11 packets transmitted, 10 received, 9% packet loss, time 10017ms
rtt min/avg/max/mdev = 1002.077/1147.151/1488.063/220.133 ms, pipe 2
kiran@HP-ENVY-15:~/temp$

Test case3 :: 500 millisecond constant packet delay + random packet delay: With constant delay (in this case 500 milliseconds) if you enable the new random packet delay feature, it will skip delay randomly few packets. Which can be controlled via random delay factor. In this case the random delay factor value is set to 1. And you can see below few packets are not delayed. Hence their ping response time almost reduced to half (i.e around 500 ms).

kiran@HP-ENVY-15:~/temp$ ping 192.168.0.1 -s 1000
PING 192.168.0.1 (192.168.0.1) 1000(1028) bytes of data.
1008 bytes from 192.168.0.1: icmp_seq=1 ttl=64 time=1503 ms
1008 bytes from 192.168.0.1: icmp_seq=2 ttl=64 time=1497 ms
1008 bytes from 192.168.0.1: icmp_seq=3 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=4 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=5 ttl=64 time=1001 ms
1008 bytes from 192.168.0.1: icmp_seq=6 ttl=64 time=1001 ms
1008 bytes from 192.168.0.1: icmp_seq=7 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=8 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=9 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=10 ttl=64 time=419 ms
1008 bytes from 192.168.0.1: icmp_seq=11 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=12 ttl=64 time=1001 ms
1008 bytes from 192.168.0.1: icmp_seq=13 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=14 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=15 ttl=64 time=1001 ms
1008 bytes from 192.168.0.1: icmp_seq=16 ttl=64 time=502 ms
1008 bytes from 192.168.0.1: icmp_seq=17 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=18 ttl=64 time=502 ms
1008 bytes from 192.168.0.1: icmp_seq=19 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=20 ttl=64 time=1001 ms
1008 bytes from 192.168.0.1: icmp_seq=21 ttl=64 time=1002 ms
^C
--- 192.168.0.1 ping statistics ---
22 packets transmitted, 21 received, 4% packet loss, time 21029ms
rtt min/avg/max/mdev = 419.093/974.135/1503.026/250.662 ms, pipe 2
kiran@HP-ENVY-15:~/temp$

Random Packet delay: As discussed in my VLOG/update earlier, the idea of Random packet delay is to introduce the fluctuating, bursty nature of packet flow. So here are various tests done which shows the same in action. These tests below are performed while downloading a large file by enabling random packet delay along with various values of constant packet delay.

Test case4 :: 2 millisecond constant packet delay + random packet delay: With constant delay of 2 millisecond and random packet delay you can notice the blue curve which almost appears constant. The traffic in this case is bursty but it is not that significant to notice in the graph shown below.
TOFFEE_Mocha_2ms_delay_with_random_packet_delay

Test case5 :: 10 millisecond constant packet delay + random packet delay: With constant delay of 10 millisecond and random packet delay you can notice the blue curve which almost appears constant. The traffic in this case is bursty but it is not that significant to notice in the graph shown below. But it appears somewhat fluctuating than the 5 millisecond test case4 above.
TOFFEE_Mocha_10ms_delay_with_random_packet_delay

Test case6 :: 200 millisecond constant packet delay + random packet delay: With constant delay of 200 millisecond and random packet delay you can notice the fluctuating blue curve. With this we can understand the true purpose of random packet delay.
TOFFEE_Mocha_200ms_delay_with_random_packet_delay

Test case7 :: 200 millisecond constant packet delay + WITHOUT random packet delay: With constant delay of 200 millisecond and WITHOUT random packet delay feature enabled you can notice the steady blue curve. This is a direct comparison of a test case with constant packet delay 200 millisecond with and without random packet delay. With random packet delay it makes the network performance choppy, fluctuating and bursty, but without random packet delay feature the network performance appears almost constant.
TOFFEE_Mocha_200ms_delay_without_random_packet_delay

So in my next upcoming TOFFEE-Mocha release I may include all these new features and updated old features. If you are in need of any specific feature (or scenario) you can kindly let know. If plausible and feasible I can support the same and release as a part of my upcoming TOFFEE-Mocha release. Kindly stay tuned !



Предлагаемые темы:


TOFFEE-Mocha - WAN Emulator


Categories

💎 TOFFEE-MOCHA new bootable ISO: Download
💎 TOFFEE Data-Center Big picture and Overview: Download PDF


Рекомендуемые темы:

TOFFEE-Mocha WAN Emulation software development - Update: 16-June-2016 ↗
Saturday' 13-Mar-2021
I started TOFFEE-Mocha WAN Emulation software development on 1-June-2016. I took the existing TOFFEE components as a base. Although the TOFFEE-Mocha is entirely an independent fresh Open-Source WAN Emulation solution. Ever since I am in the process of defining and inventing features. So far I come up with the most important feature which is expected to be present in any WAN Emulation software is the packet delay option.

The TOFFEE Project :: TOFFEE :: WAN Optimization ↗
Saturday' 13-Mar-2021
TOFFEE is an open-source WAN Optimization (Network Performance Optimization) software which can be used to optimize your critical networks.

TOFFEE Documentation :: TOFFEE-1.1.24-3-rpi2 ↗
Saturday' 13-Mar-2021
Here is my VLOG Youtube video of the same which includes details about version release notes, future road-map and so on. The TOFFEE release is highly optimized and customized for hardware platforms such as x86-64 based Intel NUC and other Intel mobile computing platforms such as laptops and so on. This version (or release) is not suited and so not recommended to be used for high-end desktop and server hardware platform.

Bitcoin Mining - Blockchain Technology - Network Optimization via TOFFEE Data-Center WAN Optimization ↗
Saturday' 13-Mar-2021
Bitcoin Mining - Blockchain Technology - Network Optimization via TOFFEE Data-Center WAN Optimization

TOFFEE-Butterscotch Bandwidth saver software development - Update: 17-Nov-2016 ↗
Saturday' 13-Mar-2021
Here is my second software development update of TOFFEE-Butterscotch. In the previous update (28-Oct-2016) I discussed about the Alerts, etc. Whereas in my first TOFFEE-Butterscotch news update I have introduced about TOFFEE-Butterscotch research, project specifications, use-cases, etc.

TEST CASES :: TEST RESULTS :: TOFFEE-Mocha-1.0.14 Development version ↗
Saturday' 13-Mar-2021



MySQL Database Network Data - WAN Acceleration ↗
Saturday' 13-Mar-2021
Here is a quick demo of TOFFEE WAN Optimization optimizing MySQL Data transfers of a MySQL Client to Server Remote Access.

Communication data network standards and data transfer speeds :: Chart ↗
Saturday' 13-Mar-2021
Here is a complete chart comprising popular communication data network standards and their respective transfer rates. I hope this reference chart will help network engineers and network software developers while performing networking tests and experiments, building WAN/network products, building WAN simulated networks of a specific standard and so on. This may also helps us to track technological advancements of communication data networks.

TOFFEE-Mocha WAN Emulation software development - Update: 16-June-2016 ↗
Saturday' 13-Mar-2021
I started TOFFEE-Mocha WAN Emulation software development on 1-June-2016. I took the existing TOFFEE components as a base. Although the TOFFEE-Mocha is entirely an independent fresh Open-Source WAN Emulation solution. Ever since I am in the process of defining and inventing features. So far I come up with the most important feature which is expected to be present in any WAN Emulation software is the packet delay option.

TOFFEE-Mocha WAN Emulation software development - Update: 1-July-2016 ↗
Saturday' 13-Mar-2021
Today I got a feature request from Jonathan Withers. Jonathan is from a company called MultiWave Australia. He said he is able to get the TOFFEE-Mocha Raspberry Pi setup up and with that he is able to emulate geostationary satellite link. But he requested me is there a way to extend the constant packet delay from 40mS to 500mS. So as a part of his request I supported the same in the current ongoing development version of TOFFEE-Mocha.



Featured Educational Video:
Watch on Youtube - [4073//1] 0x1c9 NAS OS | Expert's take on FreeNAS vs UNRAID | My two cents | Best Tips ↗

Network Latency and Bandwidth Assessment - for Network Admins and Infrastructure Architects ↗
Saturday' 13-Mar-2021

Timelapse Screen Capture of TOFFEE-DataCenter Network Acceleration - with new RRDtool graph support ↗
Saturday' 13-Mar-2021
Timelapse Screen Capture of TOFFEE-DataCenter Network Acceleration - with new RRDtool graph support

TOFFEE-DataCenter Download :: TOFFEE-DATACENTER-1.2.2-1-portable ↗
Saturday' 13-Mar-2021

Building my own CDN - choosing a web-hosting to deploy my CDN - Update: 28-July-2016 ↗
Saturday' 13-Mar-2021
The TOFFEE Project website is hosted on Inmotion Hosting. And so I am looking for alternate hosting provider to build my first CDN node. My plan is to make multiple sub-domains of my website such as cdn1.the-toffee-project.org, cdn2.the-toffee-project.org and point each of this corresponding subdomain(s) to various alternative web hosting servers geographically spread across the world. Sometimes choosing the same vendor for multiple CDN nodes may result multiple servers existing in the data-center. And this becomes an issue if there is some catastrophic network disaster.



Watch on Youtube - [889//1] 280 WAN Optimization - Animated demo of Packet Optimization in TOFFEE-DataCenter ↗

VPN Network Optimization via TOFFEE WAN Optimization ↗
Saturday' 13-Mar-2021
VPN Networks may degrade network performance due to various packet processing overheads such as encryption and by adding extra network protocol header(s) (such as IPv4/IPv6, IPSec, etc). This may inflate near MTU sized packets and causes excessive packet fragmentation. Here are the few examples of packet processing involved in a VPN (or a VPN like) Tunnel. With TOFFEE you can optimize these packets even before they get processed on to a VPN device. TOFFEE optimizes packet contents (application payload and transport headers) so that these TOFFEE optimized packets when they get processed by VPN devices (or VPN software stack) they may never need further packet fragmentation. Here is a deployment scenario of TOFFEE with VPN devices.



Research :: Optimization of network data (WAN Optimization) at various levels:
Network File level network data WAN Optimization


Learn Linux Systems Software and Kernel Programming:
Linux, Kernel, Networking and Systems-Software online classes [CDN]


Hardware Compression and Decompression Accelerator Cards:
TOFFEE Architecture with Compression and Decompression Accelerator Card


TOFFEE-DataCenter on a Dell Server - Intel Xeon E5645 CPU:
TOFFEE-DataCenter screenshots on a Dual CPU - Intel(R) Xeon(R) CPU E5645 @ 2.40GHz - Dell Server